105 lines
2.8 KiB
Python
105 lines
2.8 KiB
Python
|
import os
|
||
|
import time
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
|
||
|
# Working directory and the directory path for text files
|
||
|
WORKING_DIR = "./dickens"
|
||
|
TEXT_FILES_DIR = "/llm/mt"
|
||
|
|
||
|
# Create the working directory if it doesn't exist
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
# Initialize LightRAG
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=ollama_model_complete,
|
||
|
llm_model_name="qwen2.5:3b-instruct-max-context",
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=768,
|
||
|
max_token_size=8192,
|
||
|
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"),
|
||
|
),
|
||
|
)
|
||
|
|
||
|
# Read all .txt files from the TEXT_FILES_DIR directory
|
||
|
texts = []
|
||
|
for filename in os.listdir(TEXT_FILES_DIR):
|
||
|
if filename.endswith(".txt"):
|
||
|
file_path = os.path.join(TEXT_FILES_DIR, filename)
|
||
|
with open(file_path, "r", encoding="utf-8") as file:
|
||
|
texts.append(file.read())
|
||
|
|
||
|
|
||
|
# Batch insert texts into LightRAG with a retry mechanism
|
||
|
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
||
|
for _ in range(retries):
|
||
|
try:
|
||
|
rag.insert(texts)
|
||
|
return
|
||
|
except Exception as e:
|
||
|
print(
|
||
|
f"Error occurred during insertion: {e}. Retrying in {delay} seconds..."
|
||
|
)
|
||
|
time.sleep(delay)
|
||
|
raise RuntimeError("Failed to insert texts after multiple retries.")
|
||
|
|
||
|
|
||
|
insert_texts_with_retry(rag, texts)
|
||
|
|
||
|
# Perform different types of queries and handle potential errors
|
||
|
try:
|
||
|
print(
|
||
|
rag.query(
|
||
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||
|
)
|
||
|
)
|
||
|
except Exception as e:
|
||
|
print(f"Error performing naive search: {e}")
|
||
|
|
||
|
try:
|
||
|
print(
|
||
|
rag.query(
|
||
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||
|
)
|
||
|
)
|
||
|
except Exception as e:
|
||
|
print(f"Error performing local search: {e}")
|
||
|
|
||
|
try:
|
||
|
print(
|
||
|
rag.query(
|
||
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||
|
)
|
||
|
)
|
||
|
except Exception as e:
|
||
|
print(f"Error performing global search: {e}")
|
||
|
|
||
|
try:
|
||
|
print(
|
||
|
rag.query(
|
||
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||
|
)
|
||
|
)
|
||
|
except Exception as e:
|
||
|
print(f"Error performing hybrid search: {e}")
|
||
|
|
||
|
|
||
|
# Function to clear VRAM resources
|
||
|
def clear_vram():
|
||
|
os.system("sudo nvidia-smi --gpu-reset")
|
||
|
|
||
|
|
||
|
# Regularly clear VRAM to prevent overflow
|
||
|
clear_vram_interval = 3600 # Clear once every hour
|
||
|
start_time = time.time()
|
||
|
|
||
|
while True:
|
||
|
current_time = time.time()
|
||
|
if current_time - start_time > clear_vram_interval:
|
||
|
clear_vram()
|
||
|
start_time = current_time
|
||
|
time.sleep(60) # Check the time every minute
|