lightrag-comments/reproduce/Step_1_openai_compatible.py

72 lines
1.8 KiB
Python
Raw Permalink Normal View History

import os
import json
import time
import numpy as np
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc
from lightrag.llm import openai_complete_if_cache, openai_embedding
## For Upstage API
# please check if embedding_dim=4096 in lightrag.py and llm.py in lightrag direcotry
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
)
## /For Upstage API
def insert_text(rag, file_path):
with open(file_path, mode="r") as f:
unique_contexts = json.load(f)
retries = 0
max_retries = 3
while retries < max_retries:
try:
rag.insert(unique_contexts)
break
except Exception as e:
retries += 1
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
time.sleep(10)
if retries == max_retries:
print("Insertion failed after exceeding the maximum number of retries")
cls = "mix"
WORKING_DIR = f"../{cls}"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096, max_token_size=8192, func=embedding_func
),
)
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")