lightrag-comments/reproduce/Step_2.py

79 lines
2.3 KiB
Python
Raw Normal View History

import json
from openai import OpenAI
from transformers import GPT2Tokenizer
def openai_complete_if_cache(
model="gpt-4o", prompt=None, system_prompt=None, history_messages=[], **kwargs
) -> str:
openai_client = OpenAI()
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
response = openai_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
return response.choices[0].message.content
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
def get_summary(context, tot_tokens=2000):
tokens = tokenizer.tokenize(context)
half_tokens = tot_tokens // 2
start_tokens = tokens[1000 : 1000 + half_tokens]
end_tokens = tokens[-(1000 + half_tokens) : 1000]
summary_tokens = start_tokens + end_tokens
summary = tokenizer.convert_tokens_to_string(summary_tokens)
return summary
clses = ["agriculture"]
for cls in clses:
with open(f"../datasets/unique_contexts/{cls}_unique_contexts.json", mode="r") as f:
unique_contexts = json.load(f)
summaries = [get_summary(context) for context in unique_contexts]
total_description = "\n\n".join(summaries)
prompt = f"""
Given the following description of a dataset:
{total_description}
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
Output the results in the following structure:
- User 1: [user description]
- Task 1: [task description]
- Question 1:
- Question 2:
- Question 3:
- Question 4:
- Question 5:
- Task 2: [task description]
...
- Task 5: [task description]
- User 2: [user description]
...
- User 5: [user description]
...
"""
result = openai_complete_if_cache(model="gpt-4o", prompt=prompt)
file_path = f"../datasets/questions/{cls}_questions.txt"
with open(file_path, "w") as file:
file.write(result)
print(f"{cls}_questions written to {file_path}")