79 lines
2.3 KiB
Python
79 lines
2.3 KiB
Python
|
import json
|
||
|
from openai import OpenAI
|
||
|
from transformers import GPT2Tokenizer
|
||
|
|
||
|
|
||
|
def openai_complete_if_cache(
|
||
|
model="gpt-4o", prompt=None, system_prompt=None, history_messages=[], **kwargs
|
||
|
) -> str:
|
||
|
openai_client = OpenAI()
|
||
|
|
||
|
messages = []
|
||
|
if system_prompt:
|
||
|
messages.append({"role": "system", "content": system_prompt})
|
||
|
messages.extend(history_messages)
|
||
|
messages.append({"role": "user", "content": prompt})
|
||
|
|
||
|
response = openai_client.chat.completions.create(
|
||
|
model=model, messages=messages, **kwargs
|
||
|
)
|
||
|
return response.choices[0].message.content
|
||
|
|
||
|
|
||
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
||
|
|
||
|
|
||
|
def get_summary(context, tot_tokens=2000):
|
||
|
tokens = tokenizer.tokenize(context)
|
||
|
half_tokens = tot_tokens // 2
|
||
|
|
||
|
start_tokens = tokens[1000 : 1000 + half_tokens]
|
||
|
end_tokens = tokens[-(1000 + half_tokens) : 1000]
|
||
|
|
||
|
summary_tokens = start_tokens + end_tokens
|
||
|
summary = tokenizer.convert_tokens_to_string(summary_tokens)
|
||
|
|
||
|
return summary
|
||
|
|
||
|
|
||
|
clses = ["agriculture"]
|
||
|
for cls in clses:
|
||
|
with open(f"../datasets/unique_contexts/{cls}_unique_contexts.json", mode="r") as f:
|
||
|
unique_contexts = json.load(f)
|
||
|
|
||
|
summaries = [get_summary(context) for context in unique_contexts]
|
||
|
|
||
|
total_description = "\n\n".join(summaries)
|
||
|
|
||
|
prompt = f"""
|
||
|
Given the following description of a dataset:
|
||
|
|
||
|
{total_description}
|
||
|
|
||
|
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
|
||
|
|
||
|
Output the results in the following structure:
|
||
|
- User 1: [user description]
|
||
|
- Task 1: [task description]
|
||
|
- Question 1:
|
||
|
- Question 2:
|
||
|
- Question 3:
|
||
|
- Question 4:
|
||
|
- Question 5:
|
||
|
- Task 2: [task description]
|
||
|
...
|
||
|
- Task 5: [task description]
|
||
|
- User 2: [user description]
|
||
|
...
|
||
|
- User 5: [user description]
|
||
|
...
|
||
|
"""
|
||
|
|
||
|
result = openai_complete_if_cache(model="gpt-4o", prompt=prompt)
|
||
|
|
||
|
file_path = f"../datasets/questions/{cls}_questions.txt"
|
||
|
with open(file_path, "w") as file:
|
||
|
file.write(result)
|
||
|
|
||
|
print(f"{cls}_questions written to {file_path}")
|