116 lines
3.2 KiB
Python
116 lines
3.2 KiB
Python
|
import os
|
||
|
import re
|
||
|
import json
|
||
|
import asyncio
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from tqdm import tqdm
|
||
|
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
## For Upstage API
|
||
|
# please check if embedding_dim=4096 in lightrag.py and llm.py in lightrag direcotry
|
||
|
async def llm_model_func(
|
||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||
|
) -> str:
|
||
|
return await openai_complete_if_cache(
|
||
|
"solar-mini",
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||
|
base_url="https://api.upstage.ai/v1/solar",
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||
|
return await openai_embedding(
|
||
|
texts,
|
||
|
model="solar-embedding-1-large-query",
|
||
|
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||
|
base_url="https://api.upstage.ai/v1/solar",
|
||
|
)
|
||
|
|
||
|
|
||
|
## /For Upstage API
|
||
|
|
||
|
|
||
|
def extract_queries(file_path):
|
||
|
with open(file_path, "r") as f:
|
||
|
data = f.read()
|
||
|
|
||
|
data = data.replace("**", "")
|
||
|
|
||
|
queries = re.findall(r"- Question \d+: (.+)", data)
|
||
|
|
||
|
return queries
|
||
|
|
||
|
|
||
|
async def process_query(query_text, rag_instance, query_param):
|
||
|
try:
|
||
|
result = await rag_instance.aquery(query_text, param=query_param)
|
||
|
return {"query": query_text, "result": result}, None
|
||
|
except Exception as e:
|
||
|
return None, {"query": query_text, "error": str(e)}
|
||
|
|
||
|
|
||
|
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||
|
try:
|
||
|
loop = asyncio.get_event_loop()
|
||
|
except RuntimeError:
|
||
|
loop = asyncio.new_event_loop()
|
||
|
asyncio.set_event_loop(loop)
|
||
|
return loop
|
||
|
|
||
|
|
||
|
def run_queries_and_save_to_json(
|
||
|
queries, rag_instance, query_param, output_file, error_file
|
||
|
):
|
||
|
loop = always_get_an_event_loop()
|
||
|
|
||
|
with open(output_file, "a", encoding="utf-8") as result_file, open(
|
||
|
error_file, "a", encoding="utf-8"
|
||
|
) as err_file:
|
||
|
result_file.write("[\n")
|
||
|
first_entry = True
|
||
|
|
||
|
for query_text in tqdm(queries, desc="Processing queries", unit="query"):
|
||
|
result, error = loop.run_until_complete(
|
||
|
process_query(query_text, rag_instance, query_param)
|
||
|
)
|
||
|
|
||
|
if result:
|
||
|
if not first_entry:
|
||
|
result_file.write(",\n")
|
||
|
json.dump(result, result_file, ensure_ascii=False, indent=4)
|
||
|
first_entry = False
|
||
|
elif error:
|
||
|
json.dump(error, err_file, ensure_ascii=False, indent=4)
|
||
|
err_file.write("\n")
|
||
|
|
||
|
result_file.write("\n]")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
cls = "mix"
|
||
|
mode = "hybrid"
|
||
|
WORKING_DIR = f"../{cls}"
|
||
|
|
||
|
rag = LightRAG(working_dir=WORKING_DIR)
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=llm_model_func,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=4096, max_token_size=8192, func=embedding_func
|
||
|
),
|
||
|
)
|
||
|
query_param = QueryParam(mode=mode)
|
||
|
|
||
|
base_dir = "../datasets/questions"
|
||
|
queries = extract_queries(f"{base_dir}/{cls}_questions.txt")
|
||
|
run_queries_and_save_to_json(
|
||
|
queries, rag, query_param, f"{base_dir}/result.json", f"{base_dir}/errors.json"
|
||
|
)
|