56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
|
from openai import OpenAI
|
||
|
|
||
|
# os.environ["OPENAI_API_KEY"] = ""
|
||
|
|
||
|
|
||
|
def openai_complete_if_cache(
|
||
|
model="gpt-4o-mini", prompt=None, system_prompt=None, history_messages=[], **kwargs
|
||
|
) -> str:
|
||
|
openai_client = OpenAI()
|
||
|
|
||
|
messages = []
|
||
|
if system_prompt:
|
||
|
messages.append({"role": "system", "content": system_prompt})
|
||
|
messages.extend(history_messages)
|
||
|
messages.append({"role": "user", "content": prompt})
|
||
|
|
||
|
response = openai_client.chat.completions.create(
|
||
|
model=model, messages=messages, **kwargs
|
||
|
)
|
||
|
return response.choices[0].message.content
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
description = ""
|
||
|
prompt = f"""
|
||
|
Given the following description of a dataset:
|
||
|
|
||
|
{description}
|
||
|
|
||
|
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
|
||
|
|
||
|
Output the results in the following structure:
|
||
|
- User 1: [user description]
|
||
|
- Task 1: [task description]
|
||
|
- Question 1:
|
||
|
- Question 2:
|
||
|
- Question 3:
|
||
|
- Question 4:
|
||
|
- Question 5:
|
||
|
- Task 2: [task description]
|
||
|
...
|
||
|
- Task 5: [task description]
|
||
|
- User 2: [user description]
|
||
|
...
|
||
|
- User 5: [user description]
|
||
|
...
|
||
|
"""
|
||
|
|
||
|
result = openai_complete_if_cache(model="gpt-4o-mini", prompt=prompt)
|
||
|
|
||
|
file_path = "./queries.txt"
|
||
|
with open(file_path, "w") as file:
|
||
|
file.write(result)
|
||
|
|
||
|
print(f"Queries written to {file_path}")
|