175 lines
4.8 KiB
Python
175 lines
4.8 KiB
Python
|
from fastapi import FastAPI, HTTPException, File, UploadFile
|
||
|
from pydantic import BaseModel
|
||
|
import os
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
import numpy as np
|
||
|
from typing import Optional
|
||
|
import asyncio
|
||
|
import nest_asyncio
|
||
|
|
||
|
# Apply nest_asyncio to solve event loop issues
|
||
|
nest_asyncio.apply()
|
||
|
|
||
|
DEFAULT_RAG_DIR = "index_default"
|
||
|
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||
|
|
||
|
# Configure working directory
|
||
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
||
|
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||
|
print(f"LLM_MODEL: {LLM_MODEL}")
|
||
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||
|
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
|
||
|
# LLM model function
|
||
|
|
||
|
|
||
|
async def llm_model_func(
|
||
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||
|
) -> str:
|
||
|
return await openai_complete_if_cache(
|
||
|
LLM_MODEL,
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Embedding function
|
||
|
|
||
|
|
||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||
|
return await openai_embedding(
|
||
|
texts,
|
||
|
model=EMBEDDING_MODEL,
|
||
|
)
|
||
|
|
||
|
|
||
|
async def get_embedding_dim():
|
||
|
test_text = ["This is a test sentence."]
|
||
|
embedding = await embedding_func(test_text)
|
||
|
embedding_dim = embedding.shape[1]
|
||
|
print(f"{embedding_dim=}")
|
||
|
return embedding_dim
|
||
|
|
||
|
|
||
|
# Initialize RAG instance
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=llm_model_func,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=asyncio.run(get_embedding_dim()),
|
||
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||
|
func=embedding_func,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
|
||
|
# Data models
|
||
|
|
||
|
|
||
|
class QueryRequest(BaseModel):
|
||
|
query: str
|
||
|
mode: str = "hybrid"
|
||
|
only_need_context: bool = False
|
||
|
|
||
|
|
||
|
class InsertRequest(BaseModel):
|
||
|
text: str
|
||
|
|
||
|
|
||
|
class Response(BaseModel):
|
||
|
status: str
|
||
|
data: Optional[str] = None
|
||
|
message: Optional[str] = None
|
||
|
|
||
|
|
||
|
# API routes
|
||
|
|
||
|
|
||
|
@app.post("/query", response_model=Response)
|
||
|
async def query_endpoint(request: QueryRequest):
|
||
|
try:
|
||
|
loop = asyncio.get_event_loop()
|
||
|
result = await loop.run_in_executor(
|
||
|
None,
|
||
|
lambda: rag.query(
|
||
|
request.query,
|
||
|
param=QueryParam(
|
||
|
mode=request.mode, only_need_context=request.only_need_context
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
return Response(status="success", data=result)
|
||
|
except Exception as e:
|
||
|
raise HTTPException(status_code=500, detail=str(e))
|
||
|
|
||
|
|
||
|
@app.post("/insert", response_model=Response)
|
||
|
async def insert_endpoint(request: InsertRequest):
|
||
|
try:
|
||
|
loop = asyncio.get_event_loop()
|
||
|
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
||
|
return Response(status="success", message="Text inserted successfully")
|
||
|
except Exception as e:
|
||
|
raise HTTPException(status_code=500, detail=str(e))
|
||
|
|
||
|
|
||
|
@app.post("/insert_file", response_model=Response)
|
||
|
async def insert_file(file: UploadFile = File(...)):
|
||
|
try:
|
||
|
file_content = await file.read()
|
||
|
# Read file content
|
||
|
try:
|
||
|
content = file_content.decode("utf-8")
|
||
|
except UnicodeDecodeError:
|
||
|
# If UTF-8 decoding fails, try other encodings
|
||
|
content = file_content.decode("gbk")
|
||
|
# Insert file content
|
||
|
loop = asyncio.get_event_loop()
|
||
|
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||
|
|
||
|
return Response(
|
||
|
status="success",
|
||
|
message=f"File content from {file.filename} inserted successfully",
|
||
|
)
|
||
|
except Exception as e:
|
||
|
raise HTTPException(status_code=500, detail=str(e))
|
||
|
|
||
|
|
||
|
@app.get("/health")
|
||
|
async def health_check():
|
||
|
return {"status": "healthy"}
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import uvicorn
|
||
|
|
||
|
uvicorn.run(app, host="0.0.0.0", port=8020)
|
||
|
|
||
|
# Usage example
|
||
|
# To run the server, use the following command in your terminal:
|
||
|
# python lightrag_api_openai_compatible_demo.py
|
||
|
|
||
|
# Example requests:
|
||
|
# 1. Query:
|
||
|
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
||
|
|
||
|
# 2. Insert text:
|
||
|
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
||
|
|
||
|
# 3. Insert file:
|
||
|
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
||
|
|
||
|
# 4. Health check:
|
||
|
# curl -X GET "http://127.0.0.1:8020/health"
|