302 lines
10 KiB
Python
302 lines
10 KiB
Python
|
import asyncio
|
||
|
import html
|
||
|
import os
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Any, Union, cast
|
||
|
import networkx as nx
|
||
|
import numpy as np
|
||
|
from nano_vectordb import NanoVectorDB
|
||
|
|
||
|
from .utils import (
|
||
|
logger,
|
||
|
load_json,
|
||
|
write_json,
|
||
|
compute_mdhash_id,
|
||
|
)
|
||
|
|
||
|
from .base import (
|
||
|
BaseGraphStorage,
|
||
|
BaseKVStorage,
|
||
|
BaseVectorStorage,
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class JsonKVStorage(BaseKVStorage):
|
||
|
def __post_init__(self):
|
||
|
working_dir = self.global_config["working_dir"]
|
||
|
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
|
||
|
self._data = load_json(self._file_name) or {}
|
||
|
logger.info(f"Load KV {self.namespace} with {len(self._data)} data")
|
||
|
|
||
|
async def all_keys(self) -> list[str]:
|
||
|
return list(self._data.keys())
|
||
|
|
||
|
async def index_done_callback(self):
|
||
|
write_json(self._data, self._file_name)
|
||
|
|
||
|
async def get_by_id(self, id):
|
||
|
return self._data.get(id, None)
|
||
|
|
||
|
async def get_by_ids(self, ids, fields=None):
|
||
|
if fields is None:
|
||
|
return [self._data.get(id, None) for id in ids]
|
||
|
return [
|
||
|
(
|
||
|
{k: v for k, v in self._data[id].items() if k in fields}
|
||
|
if self._data.get(id, None)
|
||
|
else None
|
||
|
)
|
||
|
for id in ids
|
||
|
]
|
||
|
|
||
|
async def filter_keys(self, data: list[str]) -> set[str]:
|
||
|
return set([s for s in data if s not in self._data])
|
||
|
|
||
|
async def upsert(self, data: dict[str, dict]):
|
||
|
left_data = {k: v for k, v in data.items() if k not in self._data}
|
||
|
self._data.update(left_data)
|
||
|
return left_data
|
||
|
|
||
|
async def drop(self):
|
||
|
self._data = {}
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class NanoVectorDBStorage(BaseVectorStorage):
|
||
|
cosine_better_than_threshold: float = 0.2
|
||
|
|
||
|
def __post_init__(self):
|
||
|
self._client_file_name = os.path.join(
|
||
|
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
|
||
|
)
|
||
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||
|
self._client = NanoVectorDB(
|
||
|
self.embedding_func.embedding_dim, storage_file=self._client_file_name
|
||
|
)
|
||
|
self.cosine_better_than_threshold = self.global_config.get(
|
||
|
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
||
|
)
|
||
|
|
||
|
async def upsert(self, data: dict[str, dict]):
|
||
|
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
||
|
if not len(data):
|
||
|
logger.warning("You insert an empty data to vector DB")
|
||
|
return []
|
||
|
list_data = [
|
||
|
{
|
||
|
"__id__": k,
|
||
|
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
|
||
|
}
|
||
|
for k, v in data.items()
|
||
|
]
|
||
|
contents = [v["content"] for v in data.values()]
|
||
|
batches = [
|
||
|
contents[i : i + self._max_batch_size]
|
||
|
for i in range(0, len(contents), self._max_batch_size)
|
||
|
]
|
||
|
embeddings_list = await asyncio.gather(
|
||
|
*[self.embedding_func(batch) for batch in batches]
|
||
|
)
|
||
|
embeddings = np.concatenate(embeddings_list)
|
||
|
for i, d in enumerate(list_data):
|
||
|
d["__vector__"] = embeddings[i]
|
||
|
results = self._client.upsert(datas=list_data)
|
||
|
return results
|
||
|
|
||
|
async def query(self, query: str, top_k=5):
|
||
|
embedding = await self.embedding_func([query])
|
||
|
embedding = embedding[0]
|
||
|
results = self._client.query(
|
||
|
query=embedding,
|
||
|
top_k=top_k,
|
||
|
better_than_threshold=self.cosine_better_than_threshold,
|
||
|
)
|
||
|
results = [
|
||
|
{**dp, "id": dp["__id__"], "distance": dp["__metrics__"]} for dp in results
|
||
|
]
|
||
|
return results
|
||
|
|
||
|
@property
|
||
|
def client_storage(self):
|
||
|
return getattr(self._client, "_NanoVectorDB__storage")
|
||
|
|
||
|
async def delete_entity(self, entity_name: str):
|
||
|
try:
|
||
|
entity_id = [compute_mdhash_id(entity_name, prefix="ent-")]
|
||
|
|
||
|
if self._client.get(entity_id):
|
||
|
self._client.delete(entity_id)
|
||
|
logger.info(f"Entity {entity_name} have been deleted.")
|
||
|
else:
|
||
|
logger.info(f"No entity found with name {entity_name}.")
|
||
|
except Exception as e:
|
||
|
logger.error(f"Error while deleting entity {entity_name}: {e}")
|
||
|
|
||
|
async def delete_relation(self, entity_name: str):
|
||
|
try:
|
||
|
relations = [
|
||
|
dp
|
||
|
for dp in self.client_storage["data"]
|
||
|
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
|
||
|
]
|
||
|
ids_to_delete = [relation["__id__"] for relation in relations]
|
||
|
|
||
|
if ids_to_delete:
|
||
|
self._client.delete(ids_to_delete)
|
||
|
logger.info(
|
||
|
f"All relations related to entity {entity_name} have been deleted."
|
||
|
)
|
||
|
else:
|
||
|
logger.info(f"No relations found for entity {entity_name}.")
|
||
|
except Exception as e:
|
||
|
logger.error(
|
||
|
f"Error while deleting relations for entity {entity_name}: {e}"
|
||
|
)
|
||
|
|
||
|
async def index_done_callback(self):
|
||
|
self._client.save()
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class NetworkXStorage(BaseGraphStorage):
|
||
|
@staticmethod
|
||
|
def load_nx_graph(file_name) -> nx.Graph:
|
||
|
if os.path.exists(file_name):
|
||
|
return nx.read_graphml(file_name)
|
||
|
return None
|
||
|
|
||
|
@staticmethod
|
||
|
def write_nx_graph(graph: nx.Graph, file_name):
|
||
|
logger.info(
|
||
|
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
|
||
|
)
|
||
|
nx.write_graphml(graph, file_name)
|
||
|
|
||
|
@staticmethod
|
||
|
def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph:
|
||
|
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
|
||
|
Return the largest connected component of the graph, with nodes and edges sorted in a stable way.
|
||
|
"""
|
||
|
from graspologic.utils import largest_connected_component
|
||
|
|
||
|
graph = graph.copy()
|
||
|
graph = cast(nx.Graph, largest_connected_component(graph))
|
||
|
node_mapping = {
|
||
|
node: html.unescape(node.upper().strip()) for node in graph.nodes()
|
||
|
} # type: ignore
|
||
|
graph = nx.relabel_nodes(graph, node_mapping)
|
||
|
return NetworkXStorage._stabilize_graph(graph)
|
||
|
|
||
|
@staticmethod
|
||
|
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
|
||
|
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
|
||
|
Ensure an undirected graph with the same relationships will always be read the same way.
|
||
|
"""
|
||
|
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
|
||
|
|
||
|
sorted_nodes = graph.nodes(data=True)
|
||
|
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
|
||
|
|
||
|
fixed_graph.add_nodes_from(sorted_nodes)
|
||
|
edges = list(graph.edges(data=True))
|
||
|
|
||
|
if not graph.is_directed():
|
||
|
|
||
|
def _sort_source_target(edge):
|
||
|
source, target, edge_data = edge
|
||
|
if source > target:
|
||
|
temp = source
|
||
|
source = target
|
||
|
target = temp
|
||
|
return source, target, edge_data
|
||
|
|
||
|
edges = [_sort_source_target(edge) for edge in edges]
|
||
|
|
||
|
def _get_edge_key(source: Any, target: Any) -> str:
|
||
|
return f"{source} -> {target}"
|
||
|
|
||
|
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
|
||
|
|
||
|
fixed_graph.add_edges_from(edges)
|
||
|
return fixed_graph
|
||
|
|
||
|
def __post_init__(self):
|
||
|
self._graphml_xml_file = os.path.join(
|
||
|
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
|
||
|
)
|
||
|
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
|
||
|
if preloaded_graph is not None:
|
||
|
logger.info(
|
||
|
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
|
||
|
)
|
||
|
self._graph = preloaded_graph or nx.Graph()
|
||
|
self._node_embed_algorithms = {
|
||
|
"node2vec": self._node2vec_embed,
|
||
|
}
|
||
|
|
||
|
async def index_done_callback(self):
|
||
|
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
|
||
|
|
||
|
async def has_node(self, node_id: str) -> bool:
|
||
|
return self._graph.has_node(node_id)
|
||
|
|
||
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||
|
return self._graph.has_edge(source_node_id, target_node_id)
|
||
|
|
||
|
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||
|
return self._graph.nodes.get(node_id)
|
||
|
|
||
|
async def node_degree(self, node_id: str) -> int:
|
||
|
return self._graph.degree(node_id)
|
||
|
|
||
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||
|
return self._graph.degree(src_id) + self._graph.degree(tgt_id)
|
||
|
|
||
|
async def get_edge(
|
||
|
self, source_node_id: str, target_node_id: str
|
||
|
) -> Union[dict, None]:
|
||
|
return self._graph.edges.get((source_node_id, target_node_id))
|
||
|
|
||
|
async def get_node_edges(self, source_node_id: str):
|
||
|
if self._graph.has_node(source_node_id):
|
||
|
return list(self._graph.edges(source_node_id))
|
||
|
return None
|
||
|
|
||
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
||
|
self._graph.add_node(node_id, **node_data)
|
||
|
|
||
|
async def upsert_edge(
|
||
|
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
||
|
):
|
||
|
self._graph.add_edge(source_node_id, target_node_id, **edge_data)
|
||
|
|
||
|
async def delete_node(self, node_id: str):
|
||
|
"""
|
||
|
Delete a node from the graph based on the specified node_id.
|
||
|
|
||
|
:param node_id: The node_id to delete
|
||
|
"""
|
||
|
if self._graph.has_node(node_id):
|
||
|
self._graph.remove_node(node_id)
|
||
|
logger.info(f"Node {node_id} deleted from the graph.")
|
||
|
else:
|
||
|
logger.warning(f"Node {node_id} not found in the graph for deletion.")
|
||
|
|
||
|
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
||
|
if algorithm not in self._node_embed_algorithms:
|
||
|
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||
|
return await self._node_embed_algorithms[algorithm]()
|
||
|
|
||
|
# @TODO: NOT USED
|
||
|
async def _node2vec_embed(self):
|
||
|
from graspologic import embed
|
||
|
|
||
|
embeddings, nodes = embed.node2vec_embed(
|
||
|
self._graph,
|
||
|
**self.global_config["node2vec_params"],
|
||
|
)
|
||
|
|
||
|
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
|
||
|
return embeddings, nodes_ids
|