124 lines
3.6 KiB
Python
124 lines
3.6 KiB
Python
|
from dataclasses import dataclass, field
|
||
|
from typing import TypedDict, Union, Literal, Generic, TypeVar
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from .utils import EmbeddingFunc
|
||
|
|
||
|
TextChunkSchema = TypedDict(
|
||
|
"TextChunkSchema",
|
||
|
{"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int},
|
||
|
)
|
||
|
|
||
|
T = TypeVar("T")
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class QueryParam:
|
||
|
mode: Literal["local", "global", "hybrid", "naive"] = "global"
|
||
|
only_need_context: bool = False
|
||
|
response_type: str = "Multiple Paragraphs"
|
||
|
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
|
||
|
top_k: int = 60
|
||
|
# Number of tokens for the original chunks.
|
||
|
max_token_for_text_unit: int = 4000
|
||
|
# Number of tokens for the relationship descriptions
|
||
|
max_token_for_global_context: int = 4000
|
||
|
# Number of tokens for the entity descriptions
|
||
|
max_token_for_local_context: int = 4000
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class StorageNameSpace:
|
||
|
namespace: str
|
||
|
global_config: dict
|
||
|
|
||
|
async def index_done_callback(self):
|
||
|
"""commit the storage operations after indexing"""
|
||
|
pass
|
||
|
|
||
|
async def query_done_callback(self):
|
||
|
"""commit the storage operations after querying"""
|
||
|
pass
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseVectorStorage(StorageNameSpace):
|
||
|
embedding_func: EmbeddingFunc
|
||
|
meta_fields: set = field(default_factory=set)
|
||
|
|
||
|
async def query(self, query: str, top_k: int) -> list[dict]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def upsert(self, data: dict[str, dict]):
|
||
|
"""Use 'content' field from value for embedding, use key as id.
|
||
|
If embedding_func is None, use 'embedding' field from value
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseKVStorage(Generic[T], StorageNameSpace):
|
||
|
async def all_keys(self) -> list[str]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def get_by_id(self, id: str) -> Union[T, None]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def get_by_ids(
|
||
|
self, ids: list[str], fields: Union[set[str], None] = None
|
||
|
) -> list[Union[T, None]]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def filter_keys(self, data: list[str]) -> set[str]:
|
||
|
"""return un-exist keys"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def upsert(self, data: dict[str, T]):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def drop(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseGraphStorage(StorageNameSpace):
|
||
|
async def has_node(self, node_id: str) -> bool:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def node_degree(self, node_id: str) -> int:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def get_edge(
|
||
|
self, source_node_id: str, target_node_id: str
|
||
|
) -> Union[dict, None]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def get_node_edges(
|
||
|
self, source_node_id: str
|
||
|
) -> Union[list[tuple[str, str]], None]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def upsert_edge(
|
||
|
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
||
|
):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def delete_node(self, node_id: str):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
||
|
raise NotImplementedError("Node embedding is not used in lightrag.")
|