2024-11-16 11:26:57 +08:00
|
|
|
|
import os
|
|
|
|
|
import copy
|
|
|
|
|
from functools import lru_cache
|
|
|
|
|
import json
|
|
|
|
|
import aioboto3
|
|
|
|
|
import aiohttp
|
|
|
|
|
import numpy as np
|
|
|
|
|
import ollama
|
|
|
|
|
|
|
|
|
|
from openai import (
|
|
|
|
|
AsyncOpenAI,
|
|
|
|
|
APIConnectionError,
|
|
|
|
|
RateLimitError,
|
|
|
|
|
Timeout,
|
|
|
|
|
AsyncAzureOpenAI,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
import base64
|
|
|
|
|
import struct
|
|
|
|
|
|
|
|
|
|
from tenacity import (
|
|
|
|
|
retry,
|
|
|
|
|
stop_after_attempt,
|
|
|
|
|
wait_exponential,
|
|
|
|
|
retry_if_exception_type,
|
|
|
|
|
)
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
import torch
|
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
from typing import List, Dict, Callable, Any
|
|
|
|
|
from .base import BaseKVStorage
|
|
|
|
|
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 禁用并行化以避免tokenizers的并行化导致的问题
|
2024-11-16 11:26:57 +08:00
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 使用retry装饰器处理重试逻辑,处理OpenAI API的速率限制、连接和超时错误
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@retry(
|
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
|
)
|
|
|
|
|
async def openai_complete_if_cache(
|
|
|
|
|
model,
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=None,
|
|
|
|
|
history_messages=[],
|
|
|
|
|
base_url=None,
|
|
|
|
|
api_key=None,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
异步函数,通过OpenAI的API获取语言模型的补全结果,支持缓存机制。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- model: 使用的模型名称
|
|
|
|
|
- prompt: 用户输入的提示
|
|
|
|
|
- system_prompt: 系统提示(可选)
|
|
|
|
|
- history_messages: 历史消息(可选)
|
|
|
|
|
- base_url: API的基础URL(可选)
|
|
|
|
|
- api_key: API密钥(可选)
|
|
|
|
|
- **kwargs: 其他参数
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- str: 模型生成的文本
|
|
|
|
|
"""
|
|
|
|
|
# 设置环境变量中的API密钥
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if api_key:
|
|
|
|
|
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 初始化OpenAI异步客户端
|
2024-11-16 11:26:57 +08:00
|
|
|
|
openai_async_client = (
|
|
|
|
|
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
|
|
|
|
)
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 初始化哈希存储和消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
|
messages = []
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 添加系统提示到消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if system_prompt:
|
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 将历史消息和当前提示添加到消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
messages.extend(history_messages)
|
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 检查缓存中是否有结果
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
|
if if_cache_return is not None:
|
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 调用OpenAI API获取补全结果
|
2024-11-16 11:26:57 +08:00
|
|
|
|
response = await openai_async_client.chat.completions.create(
|
|
|
|
|
model=model, messages=messages, **kwargs
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 将结果缓存
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
await hashing_kv.upsert(
|
|
|
|
|
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 返回生成的文本
|
|
|
|
|
return response.choices[0].message.content
|
2024-11-16 11:26:57 +08:00
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 与openai_complete_if_cache类似的函数,但用于Azure OpenAI服务
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@retry(
|
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
|
)
|
|
|
|
|
async def azure_openai_complete_if_cache(
|
|
|
|
|
model,
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=None,
|
|
|
|
|
history_messages=[],
|
|
|
|
|
base_url=None,
|
|
|
|
|
api_key=None,
|
|
|
|
|
**kwargs,
|
|
|
|
|
):
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
异步函数,通过Azure OpenAI的API获取语言模型的补全结果,支持缓存机制。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- model: 使用的模型名称
|
|
|
|
|
- prompt: 用户输入的提示
|
|
|
|
|
- system_prompt: 系统提示(可选)
|
|
|
|
|
- history_messages: 历史消息(可选)
|
|
|
|
|
- base_url: API的基础URL(可选)
|
|
|
|
|
- api_key: API密钥(可选)
|
|
|
|
|
- **kwargs: 其他参数
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- str: 模型生成的文本
|
|
|
|
|
"""
|
|
|
|
|
# 设置环境变量中的API密钥和端点
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if api_key:
|
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
|
|
|
|
if base_url:
|
|
|
|
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 初始化Azure OpenAI异步客户端
|
2024-11-16 11:26:57 +08:00
|
|
|
|
openai_async_client = AsyncAzureOpenAI(
|
|
|
|
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
|
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 初始化哈希存储和消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
|
messages = []
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 添加系统提示到消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if system_prompt:
|
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 将历史消息和当前提示添加到消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
messages.extend(history_messages)
|
|
|
|
|
if prompt is not None:
|
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 检查缓存中是否有结果
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
|
if if_cache_return is not None:
|
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 调用Azure OpenAI API获取补全结果
|
2024-11-16 11:26:57 +08:00
|
|
|
|
response = await openai_async_client.chat.completions.create(
|
|
|
|
|
model=model, messages=messages, **kwargs
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 将结果缓存
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
await hashing_kv.upsert(
|
|
|
|
|
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
|
|
|
|
)
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 返回生成的文本
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return response.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BedrockError(Exception):
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""Amazon Bedrock 相关问题的通用错误"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@retry(
|
|
|
|
|
stop=stop_after_attempt(5),
|
|
|
|
|
wait=wait_exponential(multiplier=1, max=60),
|
|
|
|
|
retry=retry_if_exception_type((BedrockError)),
|
|
|
|
|
)
|
|
|
|
|
async def bedrock_complete_if_cache(
|
|
|
|
|
model,
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=None,
|
|
|
|
|
history_messages=[],
|
|
|
|
|
aws_access_key_id=None,
|
|
|
|
|
aws_secret_access_key=None,
|
|
|
|
|
aws_session_token=None,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
异步使用 Amazon Bedrock 完成文本生成,支持缓存。
|
|
|
|
|
|
|
|
|
|
如果缓存命中,则直接返回缓存结果。该函数在失败时支持重试。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- model: 要使用的 Bedrock 模型的模型 ID。
|
|
|
|
|
- prompt: 用户输入的提示。
|
|
|
|
|
- system_prompt: 系统提示,如果有。
|
|
|
|
|
- history_messages: 会话历史消息列表,用于对话上下文。
|
|
|
|
|
- aws_access_key_id: AWS 访问密钥 ID。
|
|
|
|
|
- aws_secret_access_key: AWS 秘密访问密钥。
|
|
|
|
|
- aws_session_token: AWS 会话令牌。
|
|
|
|
|
- **kwargs: 其他参数,例如推理参数。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- str: 生成的文本结果。
|
|
|
|
|
"""
|
|
|
|
|
# 设置 AWS 凭证
|
2024-11-16 11:26:57 +08:00
|
|
|
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
|
|
|
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
|
|
|
|
)
|
|
|
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
|
|
|
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
|
|
|
|
)
|
|
|
|
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
|
|
|
|
"AWS_SESSION_TOKEN", aws_session_token
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 修复消息历史记录格式
|
2024-11-16 11:26:57 +08:00
|
|
|
|
messages = []
|
|
|
|
|
for history_message in history_messages:
|
|
|
|
|
message = copy.copy(history_message)
|
|
|
|
|
message["content"] = [{"text": message["content"]}]
|
|
|
|
|
messages.append(message)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 添加用户提示
|
2024-11-16 11:26:57 +08:00
|
|
|
|
messages.append({"role": "user", "content": [{"text": prompt}]})
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 初始化 Converse API 参数
|
2024-11-16 11:26:57 +08:00
|
|
|
|
args = {"modelId": model, "messages": messages}
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 定义系统提示
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if system_prompt:
|
|
|
|
|
args["system"] = [{"text": system_prompt}]
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 映射并设置推理参数
|
2024-11-16 11:26:57 +08:00
|
|
|
|
inference_params_map = {
|
|
|
|
|
"max_tokens": "maxTokens",
|
|
|
|
|
"top_p": "topP",
|
|
|
|
|
"stop_sequences": "stopSequences",
|
|
|
|
|
}
|
|
|
|
|
if inference_params := list(
|
|
|
|
|
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
|
|
|
|
):
|
|
|
|
|
args["inferenceConfig"] = {}
|
|
|
|
|
for param in inference_params:
|
|
|
|
|
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
|
|
|
|
kwargs.pop(param)
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 处理缓存逻辑
|
2024-11-16 11:26:57 +08:00
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
|
if if_cache_return is not None:
|
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 通过 Converse API 调用模型
|
2024-11-16 11:26:57 +08:00
|
|
|
|
session = aioboto3.Session()
|
|
|
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
|
|
|
|
try:
|
|
|
|
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
raise BedrockError(e)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 更新缓存(如果启用)
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
await hashing_kv.upsert(
|
|
|
|
|
{
|
|
|
|
|
args_hash: {
|
|
|
|
|
"return": response["output"]["message"]["content"][0]["text"],
|
|
|
|
|
"model": model,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return response["output"]["message"]["content"][0]["text"]
|
|
|
|
|
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def initialize_hf_model(model_name):
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
初始化Hugging Face模型和tokenizer。
|
|
|
|
|
|
|
|
|
|
使用指定的模型名称初始化模型和tokenizer,并根据需要设置padding token。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- model_name: 模型的名称。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- hf_model: 初始化的Hugging Face模型。
|
|
|
|
|
- hf_tokenizer: 初始化的Hugging Face tokenizer。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
hf_tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
model_name, device_map="auto", trust_remote_code=True
|
|
|
|
|
)
|
|
|
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
model_name, device_map="auto", trust_remote_code=True
|
|
|
|
|
)
|
|
|
|
|
if hf_tokenizer.pad_token is None:
|
|
|
|
|
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
return hf_model, hf_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def hf_model_if_cache(
|
|
|
|
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用缓存的Hugging Face模型进行推理。
|
|
|
|
|
|
|
|
|
|
如果缓存中存在相同的输入,则直接返回结果,否则使用指定的模型进行推理并将结果缓存。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- model: 模型的名称。
|
|
|
|
|
- prompt: 用户的输入提示。
|
|
|
|
|
- system_prompt: 系统的提示(可选)。
|
|
|
|
|
- history_messages: 历史消息列表(可选)。
|
|
|
|
|
- **kwargs: 其他关键字参数,例如hashing_kv用于缓存存储。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- response_text: 模型的响应文本。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
model_name = model
|
|
|
|
|
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
|
messages = []
|
|
|
|
|
if system_prompt:
|
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
|
messages.extend(history_messages)
|
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
|
if if_cache_return is not None:
|
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
input_prompt = ""
|
|
|
|
|
try:
|
|
|
|
|
input_prompt = hf_tokenizer.apply_chat_template(
|
|
|
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
|
)
|
|
|
|
|
except Exception:
|
|
|
|
|
try:
|
|
|
|
|
ori_message = copy.deepcopy(messages)
|
|
|
|
|
if messages[0]["role"] == "system":
|
|
|
|
|
messages[1]["content"] = (
|
|
|
|
|
"<system>"
|
|
|
|
|
+ messages[0]["content"]
|
|
|
|
|
+ "</system>\n"
|
|
|
|
|
+ messages[1]["content"]
|
|
|
|
|
)
|
|
|
|
|
messages = messages[1:]
|
|
|
|
|
input_prompt = hf_tokenizer.apply_chat_template(
|
|
|
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
|
)
|
|
|
|
|
except Exception:
|
|
|
|
|
len_message = len(ori_message)
|
|
|
|
|
for msgid in range(len_message):
|
|
|
|
|
input_prompt = (
|
|
|
|
|
input_prompt
|
|
|
|
|
+ "<"
|
|
|
|
|
+ ori_message[msgid]["role"]
|
|
|
|
|
+ ">"
|
|
|
|
|
+ ori_message[msgid]["content"]
|
|
|
|
|
+ "</"
|
|
|
|
|
+ ori_message[msgid]["role"]
|
|
|
|
|
+ ">\n"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
input_ids = hf_tokenizer(
|
|
|
|
|
input_prompt, return_tensors="pt", padding=True, truncation=True
|
|
|
|
|
).to("cuda")
|
|
|
|
|
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()}
|
|
|
|
|
output = hf_model.generate(
|
|
|
|
|
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True
|
|
|
|
|
)
|
|
|
|
|
response_text = hf_tokenizer.decode(
|
|
|
|
|
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
|
|
|
|
)
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}})
|
|
|
|
|
return response_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def ollama_model_if_cache(
|
|
|
|
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
异步函数,通过Olama模型生成回答,支持缓存机制以优化性能。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
model: 使用的模型名称。
|
|
|
|
|
prompt: 用户的提问。
|
|
|
|
|
system_prompt: 系统的提示,用于设定对话背景。
|
|
|
|
|
history_messages: 历史对话消息,用于维持对话上下文。
|
|
|
|
|
**kwargs: 其他参数,包括max_tokens, response_format, host, timeout等。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
生成的模型回答。
|
|
|
|
|
"""
|
|
|
|
|
# 移除不需要的参数,以符合Olama客户端的期望
|
2024-11-16 11:26:57 +08:00
|
|
|
|
kwargs.pop("max_tokens", None)
|
|
|
|
|
kwargs.pop("response_format", None)
|
|
|
|
|
host = kwargs.pop("host", None)
|
|
|
|
|
timeout = kwargs.pop("timeout", None)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 初始化Olama异步客户端
|
2024-11-16 11:26:57 +08:00
|
|
|
|
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 构建消息列表,首先添加系统提示(如果有)
|
2024-11-16 11:26:57 +08:00
|
|
|
|
messages = []
|
|
|
|
|
if system_prompt:
|
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 获取哈希存储实例,用于缓存
|
2024-11-16 11:26:57 +08:00
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 将历史消息和当前用户提问添加到消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
messages.extend(history_messages)
|
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 如果提供了哈希存储,尝试从缓存中获取回答
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
|
if if_cache_return is not None:
|
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 如果缓存中没有回答,调用Olama模型生成回答
|
2024-11-16 11:26:57 +08:00
|
|
|
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 提取生成的回答内容
|
2024-11-16 11:26:57 +08:00
|
|
|
|
result = response["message"]["content"]
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 如果使用了哈希存储,将新生成的回答存入缓存
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 返回生成的回答
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
|
def initialize_lmdeploy_pipeline(
|
|
|
|
|
model,
|
|
|
|
|
tp=1,
|
|
|
|
|
chat_template=None,
|
|
|
|
|
log_level="WARNING",
|
|
|
|
|
model_format="hf",
|
|
|
|
|
quant_policy=0,
|
|
|
|
|
):
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
初始化lmdeploy管道,用于模型推理,带有缓存机制。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
model: 模型路径。
|
|
|
|
|
tp: 张量并行度。
|
|
|
|
|
chat_template: 聊天模板配置。
|
|
|
|
|
log_level: 日志级别。
|
|
|
|
|
model_format: 模型格式。
|
|
|
|
|
quant_policy: 量化策略。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
初始化的lmdeploy管道实例。
|
|
|
|
|
"""
|
|
|
|
|
# 导入必要的模块和类
|
2024-11-16 11:26:57 +08:00
|
|
|
|
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 创建并配置lmdeploy管道
|
2024-11-16 11:26:57 +08:00
|
|
|
|
lmdeploy_pipe = pipeline(
|
|
|
|
|
model_path=model,
|
|
|
|
|
backend_config=TurbomindEngineConfig(
|
|
|
|
|
tp=tp, model_format=model_format, quant_policy=quant_policy
|
|
|
|
|
),
|
|
|
|
|
chat_template_config=ChatTemplateConfig(model_name=chat_template)
|
|
|
|
|
if chat_template
|
|
|
|
|
else None,
|
|
|
|
|
log_level="WARNING",
|
|
|
|
|
)
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 返回配置好的管道实例
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return lmdeploy_pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def lmdeploy_model_if_cache(
|
|
|
|
|
model,
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=None,
|
|
|
|
|
history_messages=[],
|
|
|
|
|
chat_template=None,
|
|
|
|
|
model_format="hf",
|
|
|
|
|
quant_policy=0,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> str:
|
|
|
|
|
"""
|
2024-11-16 11:29:02 +08:00
|
|
|
|
异步执行语言模型推理,支持缓存。
|
|
|
|
|
|
|
|
|
|
该函数初始化 lmdeploy 管道进行模型推理,支持多种模型格式和量化策略。它处理输入的提示文本、系统提示和历史消息,
|
|
|
|
|
并尝试从缓存中检索响应。如果未命中缓存,则生成响应并缓存结果以供将来使用。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
model (str): 模型路径。
|
|
|
|
|
可以是以下选项之一:
|
|
|
|
|
- i) 通过 `lmdeploy convert` 命令转换或从 ii) 和 iii) 下载的本地 turbomind 模型目录路径。
|
|
|
|
|
- ii) 在 huggingface.co 上托管的 lmdeploy 量化模型的 model_id,例如
|
2024-11-16 11:26:57 +08:00
|
|
|
|
"InternLM/internlm-chat-20b-4bit",
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"lmdeploy/llama2-chat-70b-4bit" 等。
|
|
|
|
|
- iii) 在 huggingface.co 上托管的模型的 model_id,例如
|
|
|
|
|
"internlm/internlm-chat-7b",
|
|
|
|
|
"Qwen/Qwen-7B-Chat ",
|
|
|
|
|
"baichuan-inc/Baichuan2-7B-Chat" 等。
|
|
|
|
|
chat_template (str): 当模型是 huggingface.co 上的 PyTorch 模型时需要,例如 "internlm-chat-7b",
|
|
|
|
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" 等,以及当本地路径的模型名称与 HF 中的原始模型名称不匹配时。
|
|
|
|
|
tp (int): 张量并行度
|
|
|
|
|
prompt (Union[str, List[str]]): 要完成的输入文本。
|
|
|
|
|
do_preprocess (bool): 是否预处理消息。默认为 True,表示将应用 chat_template。
|
|
|
|
|
skip_special_tokens (bool): 解码时是否移除特殊标记。默认为 True。
|
|
|
|
|
do_sample (bool): 是否使用采样,否则使用贪心解码。默认为 False,表示使用贪心解码。
|
2024-11-16 11:26:57 +08:00
|
|
|
|
"""
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 导入 lmdeploy 及相关模块,如果未安装则抛出错误
|
2024-11-16 11:26:57 +08:00
|
|
|
|
try:
|
|
|
|
|
import lmdeploy
|
|
|
|
|
from lmdeploy import version_info, GenerationConfig
|
|
|
|
|
except Exception:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
raise ImportError("请在初始化 lmdeploy 后端之前安装 lmdeploy。")
|
2024-11-16 11:26:57 +08:00
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 提取并处理关键字参数
|
2024-11-16 11:26:57 +08:00
|
|
|
|
kwargs.pop("response_format", None)
|
|
|
|
|
max_new_tokens = kwargs.pop("max_tokens", 512)
|
|
|
|
|
tp = kwargs.pop("tp", 1)
|
|
|
|
|
skip_special_tokens = kwargs.pop("skip_special_tokens", True)
|
|
|
|
|
do_preprocess = kwargs.pop("do_preprocess", True)
|
|
|
|
|
do_sample = kwargs.pop("do_sample", False)
|
|
|
|
|
gen_params = kwargs
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 检查 lmdeploy 版本兼容性,确保支持 do_sample 参数
|
2024-11-16 11:26:57 +08:00
|
|
|
|
version = version_info
|
|
|
|
|
if do_sample is not None and version < (0, 6, 0):
|
|
|
|
|
raise RuntimeError(
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"`do_sample` 参数在 lmdeploy v0.6.0 之前不受支持,当前使用的 lmdeploy 版本为 {}"
|
|
|
|
|
.format(lmdeploy.__version__)
|
2024-11-16 11:26:57 +08:00
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
do_sample = True
|
|
|
|
|
gen_params.update(do_sample=do_sample)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 初始化 lmdeploy 管道
|
2024-11-16 11:26:57 +08:00
|
|
|
|
lmdeploy_pipe = initialize_lmdeploy_pipeline(
|
|
|
|
|
model=model,
|
|
|
|
|
tp=tp,
|
|
|
|
|
chat_template=chat_template,
|
|
|
|
|
model_format=model_format,
|
|
|
|
|
quant_policy=quant_policy,
|
|
|
|
|
log_level="WARNING",
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 构建消息列表
|
2024-11-16 11:26:57 +08:00
|
|
|
|
messages = []
|
|
|
|
|
if system_prompt:
|
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 获取哈希存储对象
|
2024-11-16 11:26:57 +08:00
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
|
messages.extend(history_messages)
|
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
|
|
|
|
# 尝试从缓存中获取响应
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
|
if if_cache_return is not None:
|
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 配置生成参数
|
2024-11-16 11:26:57 +08:00
|
|
|
|
gen_config = GenerationConfig(
|
|
|
|
|
skip_special_tokens=skip_special_tokens,
|
|
|
|
|
max_new_tokens=max_new_tokens,
|
|
|
|
|
**gen_params,
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 生成响应
|
2024-11-16 11:26:57 +08:00
|
|
|
|
response = ""
|
|
|
|
|
async for res in lmdeploy_pipe.generate(
|
|
|
|
|
messages,
|
|
|
|
|
gen_config=gen_config,
|
|
|
|
|
do_preprocess=do_preprocess,
|
|
|
|
|
stream_response=False,
|
|
|
|
|
session_id=1,
|
|
|
|
|
):
|
|
|
|
|
response += res.response
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 缓存生成的响应
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if hashing_kv is not None:
|
|
|
|
|
await hashing_kv.upsert({args_hash: {"return": response, "model": model}})
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return response
|
|
|
|
|
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
|
2024-11-16 11:26:57 +08:00
|
|
|
|
async def gpt_4o_complete(
|
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用GPT-4o模型完成文本生成任务。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- prompt: 用户输入的提示文本。
|
|
|
|
|
- system_prompt: 系统级别的提示文本,用于指导模型生成。
|
|
|
|
|
- history_messages: 历史对话消息,用于上下文理解。
|
|
|
|
|
- **kwargs: 其他可变关键字参数。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 生成的文本结果。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
|
"gpt-4o",
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
async def gpt_4o_mini_complete(
|
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用较小的GPT-4o模型完成文本生成任务。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- prompt: 用户输入的提示文本。
|
|
|
|
|
- system_prompt: 系统级别的提示文本,用于指导模型生成。
|
|
|
|
|
- history_messages: 历史对话消息,用于上下文理解。
|
|
|
|
|
- **kwargs: 其他可变关键字参数。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 生成的文本结果。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
|
"gpt-4o-mini",
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
async def azure_openai_complete(
|
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用Azure上的OpenAI模型完成文本生成任务。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- prompt: 用户输入的提示文本。
|
|
|
|
|
- system_prompt: 系统级别的提示文本,用于指导模型生成。
|
|
|
|
|
- history_messages: 历史对话消息,用于上下文理解。
|
|
|
|
|
- **kwargs: 其他可变关键字参数。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 生成的文本结果。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return await azure_openai_complete_if_cache(
|
|
|
|
|
"conversation-4o-mini",
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
async def bedrock_complete(
|
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用Bedrock平台的特定模型完成文本生成任务。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- prompt: 用户输入的提示文本。
|
|
|
|
|
- system_prompt: 系统级别的提示文本,用于指导模型生成。
|
|
|
|
|
- history_messages: 历史对话消息,用于上下文理解。
|
|
|
|
|
- **kwargs: 其他可变关键字参数。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 生成的文本结果。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
return await bedrock_complete_if_cache(
|
|
|
|
|
"anthropic.claude-3-haiku-20240307-v1:0",
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
async def hf_model_complete(
|
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用Hugging Face模型完成文本生成任务。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- prompt: 用户输入的提示文本。
|
|
|
|
|
- system_prompt: 系统级别的提示文本,用于指导模型生成。
|
|
|
|
|
- history_messages: 历史对话消息,用于上下文理解。
|
|
|
|
|
- **kwargs: 其他可变关键字参数,包括模型名称。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 生成的文本结果。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
|
|
|
|
return await hf_model_if_cache(
|
|
|
|
|
model_name,
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
async def ollama_model_complete(
|
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用Ollama模型完成文本生成任务。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- prompt: 用户输入的提示文本。
|
|
|
|
|
- system_prompt: 系统级别的提示文本,用于指导模型生成。
|
|
|
|
|
- history_messages: 历史对话消息,用于上下文理解。
|
|
|
|
|
- **kwargs: 其他可变关键字参数,包括模型名称。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 生成的文本结果。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
|
|
|
|
return await ollama_model_if_cache(
|
|
|
|
|
model_name,
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 使用装饰器添加属性,如嵌入维度和最大令牌大小
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 使用重试机制处理可能的速率限制、API连接和超时错误
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@retry(
|
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
|
)
|
|
|
|
|
async def openai_embedding(
|
|
|
|
|
texts: list[str],
|
|
|
|
|
model: str = "text-embedding-3-small",
|
|
|
|
|
base_url: str = None,
|
|
|
|
|
api_key: str = None,
|
|
|
|
|
) -> np.ndarray:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用OpenAI模型生成文本嵌入。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- texts: 需要生成嵌入的文本列表
|
|
|
|
|
- model: 使用的模型名称
|
|
|
|
|
- base_url: API的基础URL
|
|
|
|
|
- api_key: API密钥
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 嵌入的NumPy数组
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if api_key:
|
|
|
|
|
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
|
|
|
|
|
openai_async_client = (
|
|
|
|
|
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
|
|
|
|
)
|
|
|
|
|
response = await openai_async_client.embeddings.create(
|
|
|
|
|
model=model, input=texts, encoding_format="float"
|
|
|
|
|
)
|
|
|
|
|
return np.array([dp.embedding for dp in response.data])
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 使用装饰器添加属性,如嵌入维度和最大令牌大小
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 使用重试机制处理可能的速率限制、API连接和超时错误
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@retry(
|
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
|
)
|
|
|
|
|
async def azure_openai_embedding(
|
|
|
|
|
texts: list[str],
|
|
|
|
|
model: str = "text-embedding-3-small",
|
|
|
|
|
base_url: str = None,
|
|
|
|
|
api_key: str = None,
|
|
|
|
|
) -> np.ndarray:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用Azure OpenAI模型生成文本嵌入。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- texts: 需要生成嵌入的文本列表
|
|
|
|
|
- model: 使用的模型名称
|
|
|
|
|
- base_url: API的基础URL
|
|
|
|
|
- api_key: API密钥
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 嵌入的NumPy数组
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if api_key:
|
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
|
|
|
|
if base_url:
|
|
|
|
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
|
|
|
|
|
|
|
|
|
openai_async_client = AsyncAzureOpenAI(
|
|
|
|
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
|
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
response = await openai_async_client.embeddings.create(
|
|
|
|
|
model=model, input=texts, encoding_format="float"
|
|
|
|
|
)
|
|
|
|
|
return np.array([dp.embedding for dp in response.data])
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 使用重试机制处理可能的速率限制、API连接和超时错误
|
2024-11-16 11:26:57 +08:00
|
|
|
|
@retry(
|
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
|
)
|
|
|
|
|
async def siliconcloud_embedding(
|
|
|
|
|
texts: list[str],
|
|
|
|
|
model: str = "netease-youdao/bce-embedding-base_v1",
|
|
|
|
|
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
|
|
|
|
|
max_token_size: int = 512,
|
|
|
|
|
api_key: str = None,
|
|
|
|
|
) -> np.ndarray:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用SiliconCloud模型生成文本嵌入。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- texts: 需要生成嵌入的文本列表
|
|
|
|
|
- model: 使用的模型名称
|
|
|
|
|
- base_url: API的基础URL
|
|
|
|
|
- max_token_size: 最大令牌大小
|
|
|
|
|
- api_key: API密钥
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 嵌入的NumPy数组
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if api_key and not api_key.startswith("Bearer "):
|
|
|
|
|
api_key = "Bearer " + api_key
|
|
|
|
|
|
|
|
|
|
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
|
|
|
|
|
|
|
|
|
truncate_texts = [text[0:max_token_size] for text in texts]
|
|
|
|
|
|
|
|
|
|
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
|
|
|
|
|
|
|
|
|
base64_strings = []
|
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
|
|
|
async with session.post(base_url, headers=headers, json=payload) as response:
|
|
|
|
|
content = await response.json()
|
|
|
|
|
if "code" in content:
|
|
|
|
|
raise ValueError(content)
|
|
|
|
|
base64_strings = [item["embedding"] for item in content["data"]]
|
|
|
|
|
|
|
|
|
|
embeddings = []
|
|
|
|
|
for string in base64_strings:
|
|
|
|
|
decode_bytes = base64.b64decode(string)
|
|
|
|
|
n = len(decode_bytes) // 4
|
|
|
|
|
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
|
|
|
|
embeddings.append(float_array)
|
|
|
|
|
return np.array(embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
|
|
|
|
# @retry(
|
|
|
|
|
# stop=stop_after_attempt(3),
|
|
|
|
|
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
|
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
|
|
|
|
# )
|
|
|
|
|
async def bedrock_embedding(
|
|
|
|
|
texts: list[str],
|
|
|
|
|
model: str = "amazon.titan-embed-text-v2:0",
|
|
|
|
|
aws_access_key_id=None,
|
|
|
|
|
aws_secret_access_key=None,
|
|
|
|
|
aws_session_token=None,
|
|
|
|
|
) -> np.ndarray:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
生成给定文本的嵌入向量。
|
|
|
|
|
|
|
|
|
|
使用指定的模型对文本列表进行嵌入处理,支持Amazon Bedrock和Cohere模型。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- texts: 需要嵌入的文本列表。
|
|
|
|
|
- model: 使用的模型标识符,默认为"amazon.titan-embed-text-v2:0"。
|
|
|
|
|
- aws_access_key_id: AWS访问密钥ID。
|
|
|
|
|
- aws_secret_access_key: AWS秘密访问密钥。
|
|
|
|
|
- aws_session_token: AWS会话令牌。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 嵌入向量的NumPy数组。
|
|
|
|
|
"""
|
|
|
|
|
# 设置AWS环境变量
|
2024-11-16 11:26:57 +08:00
|
|
|
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
|
|
|
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
|
|
|
|
)
|
|
|
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
|
|
|
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
|
|
|
|
)
|
|
|
|
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
|
|
|
|
"AWS_SESSION_TOKEN", aws_session_token
|
|
|
|
|
)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 创建aioboto3会话
|
2024-11-16 11:26:57 +08:00
|
|
|
|
session = aioboto3.Session()
|
|
|
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 根据模型提供者进行不同的处理
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if (model_provider := model.split(".")[0]) == "amazon":
|
|
|
|
|
embed_texts = []
|
|
|
|
|
for text in texts:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 根据模型版本构建请求体
|
2024-11-16 11:26:57 +08:00
|
|
|
|
if "v2" in model:
|
|
|
|
|
body = json.dumps(
|
|
|
|
|
{
|
|
|
|
|
"inputText": text,
|
|
|
|
|
# 'dimensions': embedding_dim,
|
|
|
|
|
"embeddingTypes": ["float"],
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
elif "v1" in model:
|
|
|
|
|
body = json.dumps({"inputText": text})
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f"Model {model} is not supported!")
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 调用Bedrock模型
|
2024-11-16 11:26:57 +08:00
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
|
|
|
modelId=model,
|
|
|
|
|
body=body,
|
|
|
|
|
accept="application/json",
|
|
|
|
|
contentType="application/json",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
response_body = await response.get("body").json()
|
|
|
|
|
|
|
|
|
|
embed_texts.append(response_body["embedding"])
|
|
|
|
|
elif model_provider == "cohere":
|
|
|
|
|
body = json.dumps(
|
|
|
|
|
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
|
|
|
model=model,
|
|
|
|
|
body=body,
|
|
|
|
|
accept="application/json",
|
|
|
|
|
contentType="application/json",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
response_body = json.loads(response.get("body").read())
|
|
|
|
|
|
|
|
|
|
embed_texts = response_body["embeddings"]
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
|
|
|
|
|
|
|
|
|
return np.array(embed_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用Hugging Face模型生成给定文本的嵌入向量。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- texts: 需要嵌入的文本列表。
|
|
|
|
|
- tokenizer: Hugging Face的标记器实例。
|
|
|
|
|
- embed_model: Hugging Face的嵌入模型实例。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 嵌入向量的NumPy数组。
|
|
|
|
|
"""
|
|
|
|
|
# 对文本进行标记化处理
|
2024-11-16 11:26:57 +08:00
|
|
|
|
input_ids = tokenizer(
|
|
|
|
|
texts, return_tensors="pt", padding=True, truncation=True
|
|
|
|
|
).input_ids
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 使用模型生成嵌入向量
|
2024-11-16 11:26:57 +08:00
|
|
|
|
with torch.no_grad():
|
|
|
|
|
outputs = embed_model(input_ids)
|
|
|
|
|
embeddings = outputs.last_hidden_state.mean(dim=1)
|
|
|
|
|
return embeddings.detach().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
"""
|
|
|
|
|
使用Ollama模型生成给定文本的嵌入向量。
|
|
|
|
|
|
|
|
|
|
参数:
|
|
|
|
|
- texts: 需要嵌入的文本列表。
|
|
|
|
|
- embed_model: 使用的嵌入模型标识符。
|
|
|
|
|
- **kwargs: 传递给Ollama客户端的其他参数。
|
|
|
|
|
|
|
|
|
|
返回:
|
|
|
|
|
- 嵌入向量的列表。
|
|
|
|
|
"""
|
2024-11-16 11:26:57 +08:00
|
|
|
|
embed_text = []
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 创建Ollama客户端实例
|
2024-11-16 11:26:57 +08:00
|
|
|
|
ollama_client = ollama.Client(**kwargs)
|
|
|
|
|
for text in texts:
|
2024-11-16 11:29:02 +08:00
|
|
|
|
# 调用模型生成嵌入向量
|
2024-11-16 11:26:57 +08:00
|
|
|
|
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
|
|
|
|
embed_text.append(data["embedding"])
|
|
|
|
|
|
|
|
|
|
return embed_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Model(BaseModel):
|
|
|
|
|
"""
|
|
|
|
|
This is a Pydantic model class named 'Model' that is used to define a custom language model.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
gen_func (Callable[[Any], str]): A callable function that generates the response from the language model.
|
|
|
|
|
The function should take any argument and return a string.
|
|
|
|
|
kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function.
|
|
|
|
|
This could include parameters such as the model name, API key, etc.
|
|
|
|
|
|
|
|
|
|
Example usage:
|
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]})
|
|
|
|
|
|
|
|
|
|
In this example, 'openai_complete_if_cache' is the callable function that generates the response from the OpenAI model.
|
|
|
|
|
The 'kwargs' dictionary contains the model name and API key to be passed to the function.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
gen_func: Callable[[Any], str] = Field(
|
|
|
|
|
...,
|
|
|
|
|
description="A function that generates the response from the llm. The response must be a string",
|
|
|
|
|
)
|
|
|
|
|
kwargs: Dict[str, Any] = Field(
|
|
|
|
|
...,
|
|
|
|
|
description="The arguments to pass to the callable function. Eg. the api key, model name, etc",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiModel:
|
|
|
|
|
"""
|
|
|
|
|
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier.
|
|
|
|
|
Could also be used for spliting across diffrent models or providers.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
models (List[Model]): A list of language models to be used.
|
|
|
|
|
|
|
|
|
|
Usage example:
|
|
|
|
|
```python
|
|
|
|
|
models = [
|
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}),
|
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_2"]}),
|
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_3"]}),
|
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_4"]}),
|
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_5"]}),
|
|
|
|
|
]
|
|
|
|
|
multi_model = MultiModel(models)
|
|
|
|
|
rag = LightRAG(
|
|
|
|
|
llm_model_func=multi_model.llm_model_func
|
|
|
|
|
/ ..other args
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, models: List[Model]):
|
|
|
|
|
self._models = models
|
|
|
|
|
self._current_model = 0
|
|
|
|
|
|
|
|
|
|
def _next_model(self):
|
|
|
|
|
self._current_model = (self._current_model + 1) % len(self._models)
|
|
|
|
|
return self._models[self._current_model]
|
|
|
|
|
|
|
|
|
|
async def llm_model_func(
|
|
|
|
|
self, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
|
) -> str:
|
|
|
|
|
kwargs.pop("model", None) # stop from overwriting the custom model name
|
|
|
|
|
next_model = self._next_model()
|
|
|
|
|
args = dict(
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
**kwargs,
|
|
|
|
|
**next_model.kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return await next_model.gen_func(**args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
import asyncio
|
|
|
|
|
|
|
|
|
|
async def main():
|
|
|
|
|
result = await gpt_4o_mini_complete("How are you?")
|
|
|
|
|
print(result)
|
|
|
|
|
|
2024-11-16 11:29:02 +08:00
|
|
|
|
asyncio.run(main())
|