54 lines
1.4 KiB
Python
54 lines
1.4 KiB
Python
|
import os
|
||
|
import logging
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
|
||
|
WORKING_DIR = "./dickens"
|
||
|
|
||
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||
|
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=ollama_model_complete,
|
||
|
llm_model_name="qwen2.5:7b",
|
||
|
llm_model_max_async=4,
|
||
|
llm_model_max_token_size=32768,
|
||
|
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=768,
|
||
|
max_token_size=8192,
|
||
|
func=lambda texts: ollama_embedding(
|
||
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
#
|
||
|
# with open("./kongyiji.txt", "r", encoding="utf-8") as f:
|
||
|
# rag.insert(f.read())
|
||
|
|
||
|
# Perform naive search
|
||
|
print(
|
||
|
rag.query("小说《孔乙己》中出现了哪些人物?", param=QueryParam(mode="naive"))
|
||
|
)
|
||
|
|
||
|
# Perform local search
|
||
|
print(
|
||
|
rag.query("小说《孔乙己》中出现了哪些人物?", param=QueryParam(mode="local"))
|
||
|
)
|
||
|
|
||
|
# Perform hybrid search
|
||
|
print(
|
||
|
rag.query("小说《孔乙己》中出现了哪些人物?", param=QueryParam(mode="hybrid"))
|
||
|
)
|
||
|
|
||
|
#
|
||
|
# # Perform global search
|
||
|
# print(
|
||
|
# rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||
|
# )
|
||
|
|