import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm import openai_complete_if_cache, openai_embedding from lightrag.utils import EmbeddingFunc import numpy as np WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def llm_model_func( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "solar-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=os.getenv("UPSTAGE_API_KEY"), base_url="https://api.upstage.ai/v1/solar", **kwargs, ) async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embedding( texts, model="solar-embedding-1-large-query", api_key=os.getenv("UPSTAGE_API_KEY"), base_url="https://api.upstage.ai/v1/solar", ) async def get_embedding_dim(): test_text = ["This is a test sentence."] embedding = await embedding_func(test_text) embedding_dim = embedding.shape[1] return embedding_dim # function test async def test_funcs(): result = await llm_model_func("How are you?") print("llm_model_func: ", result) result = await embedding_func(["How are you?"]) print("embedding_func: ", result) # asyncio.run(test_funcs()) async def main(): try: embedding_dimension = await get_embedding_dim() print(f"Detected embedding dimension: {embedding_dimension}") rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=embedding_dimension, max_token_size=8192, func=embedding_func, ), ) with open("./book.txt", "r", encoding="utf-8") as f: await rag.ainsert(f.read()) # Perform naive search print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="naive") ) ) # Perform local search print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="local") ) ) # Perform global search print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="global"), ) ) # Perform hybrid search print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="hybrid"), ) ) except Exception as e: print(f"An error occurred: {e}") if __name__ == "__main__": asyncio.run(main())