import os import time from lightrag import LightRAG, QueryParam from lightrag.llm import ollama_model_complete, ollama_embedding from lightrag.utils import EmbeddingFunc # Working directory and the directory path for text files WORKING_DIR = "./dickens" TEXT_FILES_DIR = "/llm/mt" # Create the working directory if it doesn't exist if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) # Initialize LightRAG rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=ollama_model_complete, llm_model_name="qwen2.5:3b-instruct-max-context", embedding_func=EmbeddingFunc( embedding_dim=768, max_token_size=8192, func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"), ), ) # Read all .txt files from the TEXT_FILES_DIR directory texts = [] for filename in os.listdir(TEXT_FILES_DIR): if filename.endswith(".txt"): file_path = os.path.join(TEXT_FILES_DIR, filename) with open(file_path, "r", encoding="utf-8") as file: texts.append(file.read()) # Batch insert texts into LightRAG with a retry mechanism def insert_texts_with_retry(rag, texts, retries=3, delay=5): for _ in range(retries): try: rag.insert(texts) return except Exception as e: print( f"Error occurred during insertion: {e}. Retrying in {delay} seconds..." ) time.sleep(delay) raise RuntimeError("Failed to insert texts after multiple retries.") insert_texts_with_retry(rag, texts) # Perform different types of queries and handle potential errors try: print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="naive") ) ) except Exception as e: print(f"Error performing naive search: {e}") try: print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="local") ) ) except Exception as e: print(f"Error performing local search: {e}") try: print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="global") ) ) except Exception as e: print(f"Error performing global search: {e}") try: print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="hybrid") ) ) except Exception as e: print(f"Error performing hybrid search: {e}") # Function to clear VRAM resources def clear_vram(): os.system("sudo nvidia-smi --gpu-reset") # Regularly clear VRAM to prevent overflow clear_vram_interval = 3600 # Clear once every hour start_time = time.time() while True: current_time = time.time() if current_time - start_time > clear_vram_interval: clear_vram() start_time = current_time time.sleep(60) # Check the time every minute