# 标准库导入
import asyncio # 异步IO支持
import html # HTML实体编解码
import os # 操作系统接口,用于文件和路径操作
# 数据类和类型提示相关导入
from dataclasses import dataclass # 数据类装饰器
from typing import (
Any, # 任意类型
Union, # 联合类型
cast # 类型转换函数
)
# 第三方库导入
import networkx as nx # 图数据处理库
import numpy as np # 数值计算库
from nano_vectordb import NanoVectorDB # 向量数据库
# 从本地utils模块导入工具函数
from .utils import (
logger, # 日志记录器
load_json, # JSON文件加载函数
write_json, # JSON文件写入函数
compute_mdhash_id, # 计算MD5哈希ID的函数
)
# 从本地base模块导入基础存储类
from .base import (
BaseGraphStorage, # 图存储基类
BaseKVStorage, # 键值存储基类
BaseVectorStorage, # 向量存储基类
)
@dataclass
class JsonKVStorage(BaseKVStorage):
"""
基于JSON文件的键值存储实现类
继承自BaseKVStorage,提供基本的键值存储功能
数据以JSON格式保存在文件系统中
"""
def __post_init__(self):
"""
初始化方法,在对象创建后自动调用
- 设置工作目录和文件路径
- 加载已存在的JSON数据
"""
working_dir = self.global_config["working_dir"] # 从全局配置获取工作目录
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json") # 构建JSON文件完整路径
self._data = load_json(self._file_name) or {} # 加载JSON文件,如果不存在则初始化为空字典
logger.info(f"Load KV {self.namespace} with {len(self._data)} data") # 记录加载数据的数量
async def all_keys(self) -> list[str]:
"""
获取存储中的所有键
返回值:
list[str]: 包含所有键的列表
"""
return list(self._data.keys())
async def index_done_callback(self):
"""
索引完成后的回调函数
将当前内存中的数据写入JSON文件
"""
write_json(self._data, self._file_name)
async def get_by_id(self, id):
"""
通过ID获取单个数据
参数:
id: 要查询的数据ID
返回值:
查找到的数据,如果不存在则返回None
"""
return self._data.get(id, None)
async def get_by_ids(self, ids, fields=None):
"""
批量获取多个ID的数据
参数:
ids: ID列表
fields: 可选,指定要返回的字段列表
返回值:
list: 包含查询结果的列表,每个元素对应一个ID的数据
"""
if fields is None:
# 如果未指定字段,返回完整数据
return [self._data.get(id, None) for id in ids]
# 如果指定了字段,只返回指定的字段
return [
(
{k: v for k, v in self._data[id].items() if k in fields}
if self._data.get(id, None)
else None
)
for id in ids
]
async def filter_keys(self, data: list[str]) -> set[str]:
"""
过滤出不存在于存储中的键
参数:
data: 要检查的键列表
返回值:
set[str]: 不存在的键集合
"""
return set([s for s in data if s not in self._data])
async def upsert(self, data: dict[str, dict]):
"""
更新或插入数据
参数:
data: 要更新/插入的数据字典,格式为 {id: {字段: 值}}
返回值:
dict: 实际插入的新数据(不包含更新的数据)
"""
left_data = {k: v for k, v in data.items() if k not in self._data} # 筛选出新数据
self._data.update(left_data) # 更新存储
return left_data # 返回新插入的数据
async def drop(self):
"""
清空所有数据
将内存中的数据字典重置为空
"""
self._data = {}
@dataclass
class NanoVectorDBStorage(BaseVectorStorage):
"""
向量数据库存储实现类
基于NanoVectorDB实现向量存储和检索功能
支持向量的增删改查操作
"""
# 余弦相似度阈值,用于过滤搜索结果
cosine_better_than_threshold: float = 0.2
def __post_init__(self):
"""
初始化方法,在对象创建后自动调用
设置存储文件路径、批处理大小,并初始化向量数据库客户端
"""
# 构建向量数据库存储文件路径
self._client_file_name = os.path.join(
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
)
# 设置批处理大小
self._max_batch_size = self.global_config["embedding_batch_num"]
# 初始化向量数据库客户端
self._client = NanoVectorDB(
self.embedding_func.embedding_dim, storage_file=self._client_file_name
)
# 从配置中获取相似度阈值
self.cosine_better_than_threshold = self.global_config.get(
"cosine_better_than_threshold", self.cosine_better_than_threshold
)
async def upsert(self, data: dict[str, dict]):
"""
更新或插入向量数据
参数:
data: 包含向量数据的字典,格式为 {id: {字段: 值}}
返回值:
list: 插入结果
"""
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
# 准备数据,提取元数据字段
list_data = [
{
"__id__": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
# 提取内容并分批处理
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
# 并行计算向量嵌入
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
# 将向量添加到数据中
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
# 执行更新/插入操作
results = self._client.upsert(datas=list_data)
return results
async def query(self, query: str, top_k=5):
"""
查询最相似的向量
参数:
query: 查询文本
top_k: 返回的最相似结果数量
返回值:
list: 包含相似度结果的列表
"""
# 计算查询文本的向量表示
embedding = await self.embedding_func([query])
embedding = embedding[0]
# 执行向量检索
results = self._client.query(
query=embedding,
top_k=top_k,
better_than_threshold=self.cosine_better_than_threshold,
)
# 格式化返回结果
results = [
{**dp, "id": dp["__id__"], "distance": dp["__metrics__"]} for dp in results
]
return results
@property
def client_storage(self):
"""获取底层存储对象"""
return getattr(self._client, "_NanoVectorDB__storage")
async def delete_entity(self, entity_name: str):
"""
删除指定实体
参数:
entity_name: 要删除的实体名称
"""
try:
# 计算实体ID
entity_id = [compute_mdhash_id(entity_name, prefix="ent-")]
# 检查并删除实体
if self._client.get(entity_id):
self._client.delete(entity_id)
logger.info(f"Entity {entity_name} have been deleted.")
else:
logger.info(f"No entity found with name {entity_name}.")
except Exception as e:
logger.error(f"Error while deleting entity {entity_name}: {e}")
async def delete_relation(self, entity_name: str):
"""
删除与指定实体相关的所有关系
参数:
entity_name: 实体名称
"""
try:
# 查找所有相关关系
relations = [
dp
for dp in self.client_storage["data"]
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
]
ids_to_delete = [relation["__id__"] for relation in relations]
# 执行删除操作
if ids_to_delete:
self._client.delete(ids_to_delete)
logger.info(
f"All relations related to entity {entity_name} have been deleted."
)
else:
logger.info(f"No relations found for entity {entity_name}.")
except Exception as e:
logger.error(
f"Error while deleting relations for entity {entity_name}: {e}"
)
async def index_done_callback(self):
"""索引完成后的回调函数,保存数据到存储文件"""
self._client.save()
@dataclass
class NetworkXStorage(BaseGraphStorage):
"""
基于NetworkX的图存储实现类
提供图数据的存储、读取和操作功能
"""
@staticmethod
def load_nx_graph(file_name) -> nx.Graph:
"""
从文件加载图数据
参数:
file_name: GraphML文件路径
返回值:
nx.Graph: 加载的图对象,如果文件不存在返回None
"""
if os.path.exists(file_name):
return nx.read_graphml(file_name)
return None
@staticmethod
def write_nx_graph(graph: nx.Graph, file_name):
"""
将图数据写入文件
参数:
graph: 要保存的图对象
file_name: 保存路径
"""
logger.info(
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
)
nx.write_graphml(graph, file_name)
@staticmethod
def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph:
"""
获取图的最大连通分量,并确保节点和边的顺序稳定
参考: https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
参数:
graph: 输入图
返回值:
nx.Graph: 处理后的稳定图
"""
from graspologic.utils import largest_connected_component
graph = graph.copy()
graph = cast(nx.Graph, largest_connected_component(graph))
# 对节点标签进行标准化处理
node_mapping = {
node: html.unescape(node.upper().strip()) for node in graph.nodes()
}
graph = nx.relabel_nodes(graph, node_mapping)
return NetworkXStorage._stabilize_graph(graph)
@staticmethod
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
"""
确保无向图的关系始终以相同的方式读取
参数:
graph: 输入图
返回值:
nx.Graph: 稳定化后的图
"""
# 根据图的类型创建新图
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
# 对节点进行排序
sorted_nodes = graph.nodes(data=True)
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
# 添加排序后的节点
fixed_graph.add_nodes_from(sorted_nodes)
edges = list(graph.edges(data=True))
# 对于无向图,确保边的源节点和目标节点有固定顺序
if not graph.is_directed():
def _sort_source_target(edge):
source, target, edge_data = edge
if source > target:
source, target = target, source
return source, target, edge_data
edges = [_sort_source_target(edge) for edge in edges]
def _get_edge_key(source: Any, target: Any) -> str:
return f"{source} -> {target}"
# 对边进行排序
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
fixed_graph.add_edges_from(edges)
return fixed_graph
def __post_init__(self):
"""
初始化方法
- 设置图存储文件路径
- 加载已存在的图数据
- 初始化节点嵌入算法
"""
self._graphml_xml_file = os.path.join(
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
)
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
if preloaded_graph is not None:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
self._graph = preloaded_graph or nx.Graph()
self._node_embed_algorithms = {
"node2vec": self._node2vec_embed,
}
async def index_done_callback(self):
"""索引完成后的回调,保存图数据到文件"""
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
async def has_node(self, node_id: str) -> bool:
"""检查节点是否存在"""
return self._graph.has_node(node_id)
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""检查边是否存在"""
return self._graph.has_edge(source_node_id, target_node_id)
async def get_node(self, node_id: str) -> Union[dict, None]:
"""获取节点数据"""
return self._graph.nodes.get(node_id)
async def node_degree(self, node_id: str) -> int:
"""获取节点的度"""
return self._graph.degree(node_id)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""获取边的度(源节点度 + 目标节点度)"""
return self._graph.degree(src_id) + self._graph.degree(tgt_id)
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> Union[dict, None]:
"""获取边的数据"""
return self._graph.edges.get((source_node_id, target_node_id))
async def get_node_edges(self, source_node_id: str):
"""获取节点的所有边"""
if self._graph.has_node(source_node_id):
return list(self._graph.edges(source_node_id))
return None
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
"""更新或插入节点"""
self._graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
):
"""更新或插入边"""
self._graph.add_edge(source_node_id, target_node_id, **edge_data)
async def delete_node(self, node_id: str):
"""
删除指定的节点
参数:
node_id: 要删除的节点ID
"""
if self._graph.has_node(node_id):
self._graph.remove_node(node_id)
logger.info(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
"""
使用指定算法进行节点嵌入
参数:
algorithm: 嵌入算法名称
返回值:
tuple: (嵌入向量数组, 节点ID列表)
"""
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
async def _node2vec_embed(self):
"""
使用node2vec算法进行节点嵌入(未使用)
返回值:
tuple: (嵌入向量数组, 节点ID列表)
"""
from graspologic import embed
embeddings, nodes = embed.node2vec_embed(
self._graph,
**self.global_config["node2vec_params"],
)
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids