from fastapi import FastAPI, HTTPException, File, UploadFile from pydantic import BaseModel import os from lightrag import LightRAG, QueryParam from lightrag.llm import openai_complete_if_cache, openai_embedding from lightrag.utils import EmbeddingFunc import numpy as np from typing import Optional import asyncio import nest_asyncio # Apply nest_asyncio to solve event loop issues nest_asyncio.apply() DEFAULT_RAG_DIR = "index_default" app = FastAPI(title="LightRAG API", description="API for RAG operations") # Configure working directory WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}") print(f"WORKING_DIR: {WORKING_DIR}") LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini") print(f"LLM_MODEL: {LLM_MODEL}") EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large") print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}") EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192)) print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) # LLM model function async def llm_model_func( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( LLM_MODEL, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) # Embedding function async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embedding( texts, model=EMBEDDING_MODEL, ) async def get_embedding_dim(): test_text = ["This is a test sentence."] embedding = await embedding_func(test_text) embedding_dim = embedding.shape[1] print(f"{embedding_dim=}") return embedding_dim # Initialize RAG instance rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=asyncio.run(get_embedding_dim()), max_token_size=EMBEDDING_MAX_TOKEN_SIZE, func=embedding_func, ), ) # Data models class QueryRequest(BaseModel): query: str mode: str = "hybrid" only_need_context: bool = False class InsertRequest(BaseModel): text: str class Response(BaseModel): status: str data: Optional[str] = None message: Optional[str] = None # API routes @app.post("/query", response_model=Response) async def query_endpoint(request: QueryRequest): try: loop = asyncio.get_event_loop() result = await loop.run_in_executor( None, lambda: rag.query( request.query, param=QueryParam( mode=request.mode, only_need_context=request.only_need_context ), ), ) return Response(status="success", data=result) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/insert", response_model=Response) async def insert_endpoint(request: InsertRequest): try: loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(request.text)) return Response(status="success", message="Text inserted successfully") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/insert_file", response_model=Response) async def insert_file(file: UploadFile = File(...)): try: file_content = await file.read() # Read file content try: content = file_content.decode("utf-8") except UnicodeDecodeError: # If UTF-8 decoding fails, try other encodings content = file_content.decode("gbk") # Insert file content loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(content)) return Response( status="success", message=f"File content from {file.filename} inserted successfully", ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/health") async def health_check(): return {"status": "healthy"} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8020) # Usage example # To run the server, use the following command in your terminal: # python lightrag_api_openai_compatible_demo.py # Example requests: # 1. Query: # curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}' # 2. Insert text: # curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}' # 3. Insert file: # curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}' # 4. Health check: # curl -X GET "http://127.0.0.1:8020/health"