import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm import openai_complete_if_cache, siliconcloud_embedding from lightrag.utils import EmbeddingFunc import numpy as np WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def llm_model_func( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "Qwen/Qwen2.5-7B-Instruct", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=os.getenv("SILICONFLOW_API_KEY"), base_url="https://api.siliconflow.cn/v1/", **kwargs, ) async def embedding_func(texts: list[str]) -> np.ndarray: return await siliconcloud_embedding( texts, model="netease-youdao/bce-embedding-base_v1", api_key=os.getenv("SILICONFLOW_API_KEY"), max_token_size=512, ) # function test async def test_funcs(): result = await llm_model_func("How are you?") print("llm_model_func: ", result) result = await embedding_func(["How are you?"]) print("embedding_func: ", result) asyncio.run(test_funcs()) rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=768, max_token_size=512, func=embedding_func ), ) with open("./book.txt") as f: rag.insert(f.read()) # Perform naive search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) ) # Perform local search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) ) # Perform global search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) ) # Perform hybrid search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) )