530 lines
15 KiB
Python
530 lines
15 KiB
Python
# 标准库导入 - 异步和IO操作
|
||
import asyncio # 异步IO支持
|
||
import html # HTML实体编解码
|
||
import io # 内存IO操作
|
||
import csv # CSV文件处理
|
||
import json # JSON数据处理
|
||
import logging # 日志记录
|
||
import os # 操作系统接口
|
||
import re # 正则表达式
|
||
|
||
# 标准库导入 - 数据结构和工具
|
||
from dataclasses import dataclass # 数据类装饰器
|
||
from functools import wraps # 装饰器工具
|
||
from hashlib import md5 # MD5哈希算法
|
||
from typing import ( # 类型提示
|
||
Any, # 任意类型
|
||
Union, # 联合类型
|
||
List # 列表类型
|
||
)
|
||
|
||
# XML处理
|
||
import xml.etree.ElementTree as ET # XML解析和处理
|
||
|
||
# 第三方库导入
|
||
import numpy as np # 数值计算库
|
||
import tiktoken # OpenAI的分词器
|
||
|
||
# 全局编码器变量
|
||
ENCODER = None
|
||
|
||
# 创建一个名为"lightrag"的日志记录器
|
||
logger = logging.getLogger("lightrag")
|
||
|
||
|
||
def set_logger(log_file: str):
|
||
"""设置日志记录器
|
||
|
||
Args:
|
||
log_file: 日志文件路径
|
||
"""
|
||
# 设置日志级别为DEBUG
|
||
logger.setLevel(logging.DEBUG)
|
||
|
||
# 创建文件处理器
|
||
file_handler = logging.FileHandler(log_file)
|
||
file_handler.setLevel(logging.DEBUG)
|
||
|
||
# 设置日志格式:时间 - 名称 - 级别 - 消息
|
||
formatter = logging.Formatter(
|
||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||
)
|
||
file_handler.setFormatter(formatter)
|
||
|
||
# 如果logger没有处理器,则添加处理器
|
||
if not logger.handlers:
|
||
logger.addHandler(file_handler)
|
||
|
||
|
||
@dataclass
|
||
class EmbeddingFunc:
|
||
"""嵌入函数的包装类
|
||
|
||
Attributes:
|
||
embedding_dim: 嵌入向量的维度
|
||
max_token_size: 最大token数量
|
||
func: 实际的嵌入函数
|
||
"""
|
||
embedding_dim: int
|
||
max_token_size: int
|
||
func: callable
|
||
|
||
async def __call__(self, *args, **kwargs) -> np.ndarray:
|
||
"""使类实例可调用,直接调用内部的嵌入函数"""
|
||
return await self.func(*args, **kwargs)
|
||
|
||
|
||
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
||
"""从字符串中定位JSON字符串主体
|
||
|
||
Args:
|
||
content: 输入字符串
|
||
|
||
Returns:
|
||
找到的JSON字符串或None
|
||
"""
|
||
# 使用正则表达式查找{}包围的内容,DOTALL模式允许匹配跨行
|
||
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
|
||
if maybe_json_str is not None:
|
||
return maybe_json_str.group(0)
|
||
else:
|
||
return None
|
||
|
||
|
||
def convert_response_to_json(response: str) -> dict:
|
||
"""将响应字符串转换为JSON对象
|
||
|
||
Args:
|
||
response: 响应字符串
|
||
|
||
Returns:
|
||
解析后的JSON字典
|
||
|
||
Raises:
|
||
AssertionError: 无法从响应中解析JSON
|
||
JSONDecodeError: JSON解析失败
|
||
"""
|
||
json_str = locate_json_string_body_from_string(response)
|
||
assert json_str is not None, f"Unable to parse JSON from response: {response}"
|
||
try:
|
||
data = json.loads(json_str)
|
||
return data
|
||
except json.JSONDecodeError as e:
|
||
logger.error(f"Failed to parse JSON: {json_str}")
|
||
raise e from None
|
||
|
||
|
||
def compute_args_hash(*args):
|
||
"""计算参数的MD5哈希值
|
||
|
||
Args:
|
||
*args: 任意数量的参数
|
||
|
||
Returns:
|
||
参数的MD5哈希值的十六进制字符串
|
||
"""
|
||
return md5(str(args).encode()).hexdigest()
|
||
|
||
|
||
def compute_mdhash_id(content, prefix: str = ""):
|
||
"""计算内容的MD5哈希ID
|
||
|
||
Args:
|
||
content: 要计算哈希的内容
|
||
prefix: 哈希值的前缀(默认为空)
|
||
|
||
Returns:
|
||
带前缀的MD5哈希值
|
||
"""
|
||
return prefix + md5(content.encode()).hexdigest()
|
||
|
||
|
||
def limit_async_func_call(max_size: int, waitting_time: float = 0.0001):
|
||
"""限制异步函数的最大并发调用次数的装饰器
|
||
|
||
Args:
|
||
max_size: 最大并发数
|
||
waitting_time: 等待时间间隔(秒)
|
||
|
||
Returns:
|
||
装饰器函数
|
||
"""
|
||
def final_decro(func):
|
||
"""内部装饰器,不使用asyncio.Semaphore以避免使用nest-asyncio"""
|
||
__current_size = 0
|
||
|
||
@wraps(func)
|
||
async def wait_func(*args, **kwargs):
|
||
nonlocal __current_size
|
||
# 当当前并发数达到最大值时,等待
|
||
while __current_size >= max_size:
|
||
await asyncio.sleep(waitting_time)
|
||
__current_size += 1
|
||
result = await func(*args, **kwargs)
|
||
__current_size -= 1
|
||
return result
|
||
|
||
return wait_func
|
||
|
||
return final_decro
|
||
|
||
|
||
def wrap_embedding_func_with_attrs(**kwargs):
|
||
"""使用属性包装嵌入函数的装饰器
|
||
|
||
Args:
|
||
**kwargs: 传递给EmbeddingFunc的关键字参数
|
||
|
||
Returns:
|
||
返回一个EmbeddingFunc实例的装饰器
|
||
"""
|
||
def final_decro(func) -> EmbeddingFunc:
|
||
new_func = EmbeddingFunc(**kwargs, func=func)
|
||
return new_func
|
||
|
||
return final_decro
|
||
|
||
|
||
def load_json(file_name):
|
||
"""从文件加载JSON数据
|
||
|
||
Args:
|
||
file_name: JSON文件路径
|
||
|
||
Returns:
|
||
加载的JSON对象,如果文件不存在则返回None
|
||
"""
|
||
if not os.path.exists(file_name):
|
||
return None
|
||
with open(file_name, encoding="utf-8") as f:
|
||
return json.load(f)
|
||
|
||
|
||
def write_json(json_obj, file_name):
|
||
"""将JSON对象写入文件
|
||
|
||
Args:
|
||
json_obj: 要写入的JSON对象
|
||
file_name: 目标文件路径
|
||
|
||
Note:
|
||
使用indent=2进行格式化,ensure_ascii=False支持中文
|
||
"""
|
||
with open(file_name, "w", encoding="utf-8") as f:
|
||
json.dump(json_obj, f, indent=2, ensure_ascii=False)
|
||
|
||
|
||
def encode_string_by_tiktoken(content: str, model_name: str = "gpt-4o"):
|
||
"""使用tiktoken将字符串编码为tokens
|
||
|
||
Args:
|
||
content: 要编码的字符串
|
||
model_name: 使用的模型名称
|
||
|
||
Returns:
|
||
编码后的token列表
|
||
"""
|
||
global ENCODER
|
||
if ENCODER is None:
|
||
ENCODER = tiktoken.encoding_for_model(model_name)
|
||
tokens = ENCODER.encode(content)
|
||
return tokens
|
||
|
||
|
||
def decode_tokens_by_tiktoken(tokens: list[int], model_name: str = "gpt-4o"):
|
||
"""使用tiktoken将tokens解码为字符串
|
||
|
||
Args:
|
||
tokens: token列表
|
||
model_name: 使用的模型名称
|
||
|
||
Returns:
|
||
解码后的字符串
|
||
"""
|
||
global ENCODER
|
||
if ENCODER is None:
|
||
ENCODER = tiktoken.encoding_for_model(model_name)
|
||
content = ENCODER.decode(tokens)
|
||
return content
|
||
|
||
|
||
def pack_user_ass_to_openai_messages(*args: str):
|
||
"""将用户和助手的对话打包成OpenAI消息格式
|
||
|
||
Args:
|
||
*args: 交替的用户和助手消息
|
||
|
||
Returns:
|
||
OpenAI格式的消息列表,奇数位为用户消息,偶数位为助手消息
|
||
"""
|
||
roles = ["user", "assistant"]
|
||
return [
|
||
{"role": roles[i % 2], "content": content} for i, content in enumerate(args)
|
||
]
|
||
|
||
|
||
def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]:
|
||
"""使用多个标记分割字符串
|
||
|
||
Args:
|
||
content: 要分割的字符串
|
||
markers: 分割标记列表
|
||
|
||
Returns:
|
||
分割后的字符串列表,去除空白
|
||
"""
|
||
if not markers:
|
||
return [content]
|
||
results = re.split("|".join(re.escape(marker) for marker in markers), content)
|
||
return [r.strip() for r in results if r.strip()]
|
||
|
||
|
||
# Refer the utils functions of the official GraphRAG implementation:
|
||
# https://github.com/microsoft/graphrag
|
||
def clean_str(input: Any) -> str:
|
||
"""清理字符串中的HTML转义字符和控制字符
|
||
|
||
Args:
|
||
input: 输入字符串或其他类型
|
||
|
||
Returns:
|
||
清理后的字符串,如果输入不是字符串则原样返回
|
||
"""
|
||
if not isinstance(input, str):
|
||
return input
|
||
|
||
result = html.unescape(input.strip())
|
||
return re.sub(r"[\x00-\x1f\x7f-\x9f]", "", result)
|
||
|
||
|
||
def is_float_regex(value):
|
||
"""检查字符串是否为浮点数格式
|
||
|
||
Args:
|
||
value: 要检查的值
|
||
|
||
Returns:
|
||
是否为浮点数格式的布尔值
|
||
"""
|
||
return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value))
|
||
|
||
|
||
def truncate_list_by_token_size(list_data: list, key: callable, max_token_size: int):
|
||
"""根据token大小截断列表
|
||
|
||
Args:
|
||
list_data: 要截断的列表
|
||
key: 从列表项中提取文本的函数
|
||
max_token_size: 最大token数量
|
||
|
||
Returns:
|
||
截断后的列表
|
||
"""
|
||
if max_token_size <= 0:
|
||
return []
|
||
tokens = 0
|
||
for i, data in enumerate(list_data):
|
||
tokens += len(encode_string_by_tiktoken(key(data)))
|
||
if tokens > max_token_size:
|
||
return list_data[:i]
|
||
return list_data
|
||
|
||
|
||
def list_of_list_to_csv(data: List[List[str]]) -> str:
|
||
"""将二维列表转换为CSV字符串
|
||
|
||
Args:
|
||
data: 二维字符串列表
|
||
|
||
Returns:
|
||
CSV格式的字符串
|
||
"""
|
||
output = io.StringIO()
|
||
writer = csv.writer(output)
|
||
writer.writerows(data)
|
||
return output.getvalue()
|
||
|
||
|
||
def csv_string_to_list(csv_string: str) -> List[List[str]]:
|
||
"""将CSV字符串转换为二维列表
|
||
|
||
Args:
|
||
csv_string: CSV格式的字符串
|
||
|
||
Returns:
|
||
二维字符串列表
|
||
"""
|
||
output = io.StringIO(csv_string)
|
||
reader = csv.reader(output)
|
||
return [row for row in reader]
|
||
|
||
|
||
def save_data_to_file(data, file_name):
|
||
"""将数据保存为JSON文件
|
||
|
||
Args:
|
||
data: 要保存的数据
|
||
file_name: 目标文件路径
|
||
"""
|
||
with open(file_name, "w", encoding="utf-8") as f:
|
||
json.dump(data, f, ensure_ascii=False, indent=4)
|
||
|
||
|
||
def xml_to_json(xml_file):
|
||
"""将GraphML格式的XML文件转换为JSON格式
|
||
|
||
Args:
|
||
xml_file: GraphML文件路径
|
||
|
||
Returns:
|
||
包含节点和边信息的字典,解析失败时返回None
|
||
|
||
Note:
|
||
转换后的数据结构为:
|
||
{
|
||
"nodes": [
|
||
{
|
||
"id": str,
|
||
"entity_type": str,
|
||
"description": str,
|
||
"source_id": str
|
||
}
|
||
],
|
||
"edges": [
|
||
{
|
||
"source": str,
|
||
"target": str,
|
||
"weight": float,
|
||
"description": str,
|
||
"keywords": str,
|
||
"source_id": str
|
||
}
|
||
]
|
||
}
|
||
"""
|
||
try:
|
||
# 解析XML文件
|
||
tree = ET.parse(xml_file)
|
||
root = tree.getroot()
|
||
|
||
# 打印根元素信息以确认文件正确加载
|
||
print(f"Root element: {root.tag}")
|
||
print(f"Root attributes: {root.attrib}")
|
||
|
||
# 初始化数据结构
|
||
data = {"nodes": [], "edges": []}
|
||
|
||
# 设置GraphML的命名空间
|
||
namespace = {"": "http://graphml.graphdrawing.org/xmlns"}
|
||
|
||
# 处理所有节点
|
||
for node in root.findall(".//node", namespace):
|
||
node_data = {
|
||
# 获取节点ID并去除引号
|
||
"id": node.get("id").strip('"'),
|
||
# 获取实体类型,如果不存在则为空字符串
|
||
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"')
|
||
if node.find("./data[@key='d0']", namespace) is not None
|
||
else "",
|
||
# 获取描述信息
|
||
"description": node.find("./data[@key='d1']", namespace).text
|
||
if node.find("./data[@key='d1']", namespace) is not None
|
||
else "",
|
||
# 获取源ID
|
||
"source_id": node.find("./data[@key='d2']", namespace).text
|
||
if node.find("./data[@key='d2']", namespace) is not None
|
||
else "",
|
||
}
|
||
data["nodes"].append(node_data)
|
||
|
||
# 处理所有边
|
||
for edge in root.findall(".//edge", namespace):
|
||
edge_data = {
|
||
# 获取边的源节点和目标节点
|
||
"source": edge.get("source").strip('"'),
|
||
"target": edge.get("target").strip('"'),
|
||
# 获取权重,默认为0.0
|
||
"weight": float(edge.find("./data[@key='d3']", namespace).text)
|
||
if edge.find("./data[@key='d3']", namespace) is not None
|
||
else 0.0,
|
||
# 获取描述信息
|
||
"description": edge.find("./data[@key='d4']", namespace).text
|
||
if edge.find("./data[@key='d4']", namespace) is not None
|
||
else "",
|
||
# 获取关键词
|
||
"keywords": edge.find("./data[@key='d5']", namespace).text
|
||
if edge.find("./data[@key='d5']", namespace) is not None
|
||
else "",
|
||
# 获取源ID
|
||
"source_id": edge.find("./data[@key='d6']", namespace).text
|
||
if edge.find("./data[@key='d6']", namespace) is not None
|
||
else "",
|
||
}
|
||
data["edges"].append(edge_data)
|
||
|
||
# 打印统计信息
|
||
print(f"Found {len(data['nodes'])} nodes and {len(data['edges'])} edges")
|
||
|
||
return data
|
||
except ET.ParseError as e:
|
||
print(f"Error parsing XML file: {e}")
|
||
return None
|
||
except Exception as e:
|
||
print(f"An error occurred: {e}")
|
||
return None
|
||
|
||
|
||
def process_combine_contexts(hl, ll):
|
||
"""合并高层和低层上下文信息
|
||
|
||
Args:
|
||
hl: 高层上下文的CSV字符串
|
||
ll: 低层上下文的CSV字符串
|
||
|
||
Returns:
|
||
合并后的CSV格式字符串
|
||
|
||
Note:
|
||
处理步骤:
|
||
1. 解析输入的CSV字符串
|
||
2. 提取并保留表头
|
||
3. 合并数据行并去重
|
||
4. 重新格式化为CSV字符串
|
||
"""
|
||
# 初始化表头
|
||
header = None
|
||
# 解析CSV字符串
|
||
list_hl = csv_string_to_list(hl.strip())
|
||
list_ll = csv_string_to_list(ll.strip())
|
||
|
||
# 提取表头
|
||
if list_hl:
|
||
header = list_hl[0]
|
||
list_hl = list_hl[1:] # 移除表头行
|
||
if list_ll:
|
||
header = list_ll[0]
|
||
list_ll = list_ll[1:] # 移除表头行
|
||
if header is None:
|
||
return ""
|
||
|
||
# 处理数据行,只保留除第一列外的数据
|
||
if list_hl:
|
||
list_hl = [",".join(item[1:]) for item in list_hl if item]
|
||
if list_ll:
|
||
list_ll = [",".join(item[1:]) for item in list_ll if item]
|
||
|
||
# 合并数据并去重
|
||
combined_sources_set = set(filter(None, list_hl + list_ll))
|
||
|
||
# 重新构建CSV字符串
|
||
combined_sources = [",\t".join(header)] # 添加表头
|
||
|
||
# 添加数据行,并加上新的序号
|
||
for i, item in enumerate(combined_sources_set, start=1):
|
||
combined_sources.append(f"{i},\t{item}")
|
||
|
||
# 用换行符连接所有行
|
||
combined_sources = "\n".join(combined_sources)
|
||
|
||
return combined_sources
|