126 lines
3.8 KiB
Python
126 lines
3.8 KiB
Python
import os
|
|
import asyncio
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.utils import EmbeddingFunc
|
|
import numpy as np
|
|
from dotenv import load_dotenv
|
|
import aiohttp
|
|
import logging
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
load_dotenv()
|
|
|
|
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
|
|
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
|
|
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
|
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
|
|
|
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
|
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
|
|
|
|
WORKING_DIR = "./dickens"
|
|
|
|
if os.path.exists(WORKING_DIR):
|
|
import shutil
|
|
|
|
shutil.rmtree(WORKING_DIR)
|
|
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def llm_model_func(
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
) -> str:
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"api-key": AZURE_OPENAI_API_KEY,
|
|
}
|
|
endpoint = f"{AZURE_OPENAI_ENDPOINT}openai/deployments/{AZURE_OPENAI_DEPLOYMENT}/chat/completions?api-version={AZURE_OPENAI_API_VERSION}"
|
|
|
|
messages = []
|
|
if system_prompt:
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
if history_messages:
|
|
messages.extend(history_messages)
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
payload = {
|
|
"messages": messages,
|
|
"temperature": kwargs.get("temperature", 0),
|
|
"top_p": kwargs.get("top_p", 1),
|
|
"n": kwargs.get("n", 1),
|
|
}
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(endpoint, headers=headers, json=payload) as response:
|
|
if response.status != 200:
|
|
raise ValueError(
|
|
f"Request failed with status {response.status}: {await response.text()}"
|
|
)
|
|
result = await response.json()
|
|
return result["choices"][0]["message"]["content"]
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"api-key": AZURE_OPENAI_API_KEY,
|
|
}
|
|
endpoint = f"{AZURE_OPENAI_ENDPOINT}openai/deployments/{AZURE_EMBEDDING_DEPLOYMENT}/embeddings?api-version={AZURE_EMBEDDING_API_VERSION}"
|
|
|
|
payload = {"input": texts}
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
async with session.post(endpoint, headers=headers, json=payload) as response:
|
|
if response.status != 200:
|
|
raise ValueError(
|
|
f"Request failed with status {response.status}: {await response.text()}"
|
|
)
|
|
result = await response.json()
|
|
embeddings = [item["embedding"] for item in result["data"]]
|
|
return np.array(embeddings)
|
|
|
|
|
|
async def test_funcs():
|
|
result = await llm_model_func("How are you?")
|
|
print("Resposta do llm_model_func: ", result)
|
|
|
|
result = await embedding_func(["How are you?"])
|
|
print("Resultado do embedding_func: ", result.shape)
|
|
print("Dimensão da embedding: ", result.shape[1])
|
|
|
|
|
|
asyncio.run(test_funcs())
|
|
|
|
embedding_dimension = 3072
|
|
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=llm_model_func,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=embedding_dimension,
|
|
max_token_size=8192,
|
|
func=embedding_func,
|
|
),
|
|
)
|
|
|
|
book1 = open("./book_1.txt", encoding="utf-8")
|
|
book2 = open("./book_2.txt", encoding="utf-8")
|
|
|
|
rag.insert([book1.read(), book2.read()])
|
|
|
|
query_text = "What are the main themes?"
|
|
|
|
print("Result (Naive):")
|
|
print(rag.query(query_text, param=QueryParam(mode="naive")))
|
|
|
|
print("\nResult (Local):")
|
|
print(rag.query(query_text, param=QueryParam(mode="local")))
|
|
|
|
print("\nResult (Global):")
|
|
print(rag.query(query_text, param=QueryParam(mode="global")))
|
|
|
|
print("\nResult (Hybrid):")
|
|
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|