lightrag-comments/examples/lightrag_lmdeploy_demo.py

76 lines
2.3 KiB
Python

import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import lmdeploy_model_if_cache, hf_embedding
from lightrag.utils import EmbeddingFunc
from transformers import AutoModel, AutoTokenizer
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def lmdeploy_model_complete(
prompt=None, system_prompt=None, history_messages=[], **kwargs
) -> str:
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await lmdeploy_model_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
## please specify chat_template if your local path does not follow original HF file name,
## or model_name is a pytorch model on huggingface.co,
## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
## for a list of chat_template available in lmdeploy.
chat_template="llama3",
# model_format ='awq', # if you are using awq quantization model.
# quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
**kwargs,
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=lmdeploy_model_complete,
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", # please use definite path for local model
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embedding(
texts,
tokenizer=AutoTokenizer.from_pretrained(
"sentence-transformers/all-MiniLM-L6-v2"
),
embed_model=AutoModel.from_pretrained(
"sentence-transformers/all-MiniLM-L6-v2"
),
),
),
)
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
# Perform local search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
# Perform global search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
# Perform hybrid search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)