lightrag-comments/examples/vram_management_demo.py

105 lines
2.8 KiB
Python

import os
import time
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.utils import EmbeddingFunc
# Working directory and the directory path for text files
WORKING_DIR = "./dickens"
TEXT_FILES_DIR = "/llm/mt"
# Create the working directory if it doesn't exist
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# Initialize LightRAG
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="qwen2.5:3b-instruct-max-context",
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"),
),
)
# Read all .txt files from the TEXT_FILES_DIR directory
texts = []
for filename in os.listdir(TEXT_FILES_DIR):
if filename.endswith(".txt"):
file_path = os.path.join(TEXT_FILES_DIR, filename)
with open(file_path, "r", encoding="utf-8") as file:
texts.append(file.read())
# Batch insert texts into LightRAG with a retry mechanism
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
for _ in range(retries):
try:
rag.insert(texts)
return
except Exception as e:
print(
f"Error occurred during insertion: {e}. Retrying in {delay} seconds..."
)
time.sleep(delay)
raise RuntimeError("Failed to insert texts after multiple retries.")
insert_texts_with_retry(rag, texts)
# Perform different types of queries and handle potential errors
try:
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
except Exception as e:
print(f"Error performing naive search: {e}")
try:
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
except Exception as e:
print(f"Error performing local search: {e}")
try:
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
except Exception as e:
print(f"Error performing global search: {e}")
try:
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
except Exception as e:
print(f"Error performing hybrid search: {e}")
# Function to clear VRAM resources
def clear_vram():
os.system("sudo nvidia-smi --gpu-reset")
# Regularly clear VRAM to prevent overflow
clear_vram_interval = 3600 # Clear once every hour
start_time = time.time()
while True:
current_time = time.time()
if current_time - start_time > clear_vram_interval:
clear_vram()
start_time = current_time
time.sleep(60) # Check the time every minute